等比数列性质:在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N?)m+n=p+q=2k(m,n,p,q,k∈N?),则am?an=ap?aq=a2kam?an=ap?aq=ak2。
①在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N?)m+n=p+q=2k(m,n,p,q,k∈N?),则am?an=ap?aq=a2kam?an=ap?aq=ak2。
②若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an?bn}{an?bn},{anbn}{anbn}仍然是等比数列;
③在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,?an,an+k,an+2k,an+3k,?为等比数列,公比为qkqk;
④q≠1q≠1的等比数列的前2n2n项,S偶=a2?[1?(q2)n]1?q2S偶=a2?[1?(q2)n]1?q2,S奇=a1?[1?(q2)n]1?q2S奇=a1?[1?(q2)n]1?q2,则S偶S奇=qS偶S奇=q;

⑤等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1?qn?1an=a1?qn?1;
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数。

(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.