二、玻色-爱因斯坦凝聚态
这曾经是爱因斯坦在70多年前预言的一种物质形态,随着科学技术的发展,现在人类实现了它,这玩意儿有啥用呢?
这群突然跌落到最低能级玻色子集合表现的特性与单个粒子一样,具有完全相同的物理性质这让“没事干”的科学家发现了新大陆:汉诺威大学与UPV/EHU组成联合研究小组,在两个分离空间内的玻色-爱因斯坦凝聚体,实现了量子纠缠!
以往的量子纠缠实验中,对象都是单个量子态。而此次实验对象则是处在玻色-爱因斯坦凝聚态的冷原子云,这种模式跟经典的量子纠缠实验模型相比,冷原子云可以制造出高纠缠态!在需要创建和控制大型纠缠态的集合体时,无疑玻色-爱因斯坦凝聚态冷原子云的纠缠具有相当的优势,这可能是未来大规模量子计算机的现实基础!
达到绝对零度后,光的运动方式会怎么样?
假设达到了绝对零度(当然这是一个不可能实现的温度),光会被冻住吗?答案是不会,因为在绝对零度的世界里没有光,如果有光的话就会有能量输入,那么这个系统就无法达到绝对零度!
那么假设无限接近绝对零度,光又会如何呢?
光子是玻色子,在无限接近绝对零度时会达到玻色-爱因斯坦凝聚态,形成冷原子超流体,犹如水银泻地一般?我们比较难想象这种光子超流体状态,但至少以现在的科技并不能实现光子达到玻色-爱因斯坦凝聚态,因为我们冷却原子用的技术就是激光制冷,暂时实现仍然还是原子级别冷原子云实验,也许不久的将来可以实现超流体光!
科幻片《幽冥》剧照
最后来简单介绍下概念很硬核、剧情很紧凑、观赏性很高关于玻色-爱因斯坦凝聚态的科幻片《幽冥》,说的是被某种实验困在在玻色-爱因斯坦凝聚态、半生半死之间的“人形生物”与三角洲特种部队之间战争的反战电影,整体来说作为科幻片来看是不错的,但请勿和现实中的玻色-爱因斯坦凝聚态联系起来,因为凡是电影很难经得起科学逻辑推敲的,尽情欣赏即可。