工业产品在制造和运行过程中,可能在表面产生宽度零点几微米的表面裂纹, 断裂力学研究表明,在恶劣的工作条件下,这些微细裂纹都会是导致设备破坏的裂纹源。
按照不同特征,可将渗透检测分为多种不同的方法:
按显示材料,分为荧光法(Fluorescent)和非荧光法(Non-Fluorescent)。前者称为“荧光渗透检测”,后者称为“着色渗透检测”。
典型的荧光渗透检测缺陷示意图。(图片来源于网络)
肉眼无法察觉的微裂纹,经荧光渗透检,在紫外线灯的照射下,黄绿色荧光格外醒目,如下图所示:
渗透检测原理
渗透检测,本质上是利用液体的表面能。
当液体和固体界面接触时会出现以下三种现象,θ称为接触角。如下图所示:
(a)θ=0°,全部润湿;(b)θ<90°,部分润湿;(c)θ>90°,不润湿。
对某一液体而言,表面张力越小,当液体在界面铺展时克服这个力做功越少,则润湿效果越好。
表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
毛细现象:当液体润湿毛细管或含有细微缝隙的物体,液体沿毛细缝隙流动的现象。
如果液体能润湿毛细管,则液体在细管上升,管子的内径越小,它里面上升的水面也越高 。例如水在玻璃毛细管内,液面是上升的,相当于水渗入毛细管内。
如果液体不能润湿毛细管,则液体在细管降低。例如水银(Hg)在玻璃毛细管内,液面是下降的。
(图片来源于维基百科)
渗透检测基本原理:由于毛细现象的作用,当人们将溶有荧光染料或着色染料的渗透剂施加于试件表面时,渗透剂就会渗入到各类开口于表面的细小缺陷中(细小的开口缺陷相当于毛细管,渗透剂渗入细小开口缺陷相当于润湿现象),然后清除依附在试件表面上多余的渗透剂,经干燥后再施加显像剂,缺陷中的渗透剂在毛细现象的作用下重新吸附到试件的表面上,形成放大的缺陷显示。用目视检测即可观察出缺陷的形状、大小及分布情况。
渗透检测特点
1、适用范围
渗透检测可以应用于各种金属、非金属、磁性及非磁性材料工件的表面开口缺陷的检测。除了多孔性的材料无法或难以检测外,几乎所有材料的表面开口缺陷都可以使用此方法,获得令人满意的检测结果。
2、渗透检测优点
(a)不受被检工件磁性、形状、大小、组织结构、化学成分及缺陷方位的限制,一次操作能检查出各个方向的缺陷。
(b)操作简便,设备简单。
(c)缺陷显示直观,灵敏度高。
3、渗透检测局限
(a)只能检测出材料的表面开口缺陷,对于埋藏在材料内部的缺陷,渗透检测就无能为力了。必须指出,由于多孔性材料的缺陷图像显示难以判断,所以渗透检测并不适合多孔性材料表面缺陷。
(b)渗透剂成分对被检工件具有一定腐蚀性,必须严格控制硫、钠等微量元素的存在。
(c)渗透剂所用的有机溶剂具有挥发性,工业染料对人体有毒性,必须注意吸入防护。
四:涡流检测(ET)的原理和特点
涡流检测(Eddy CurrentTesting),业内人士简称ET,在工业无损检测(Nondestructive Testing)领域中具有重要的地位,在航空航天、冶金、机械、电力、化工、核能等领域中发挥着越来越重要的作用。
涡流检测主要的应用是检测导电金属材料表面及近表面的宏观几何缺陷和涂层测厚。
按照不同特征,可将涡流检测分为多种不同的方法:
(1)按检测线圈的形式分类:
a)外穿式:将被检试样放在线圈内进行检测,适用于管、棒、线材的外壁缺陷。
b)内穿式:放在管子内部进行检测,专门用来检查厚壁管子内壁或钻孔内壁的缺陷。
c)探头式:放置在试样表面进行检测,不仅适用于形状简单的板材、棒材及大直径管材的表面扫查检测,也适用于形状福州的机械零件的检测。
(2)按检测线圈的结构分类:
a)绝对方式:线圈由一只线圈组成。
b)差动方式:由两只反相连接的线圈组成。
c)自比较方式:多个线圈绕在一个骨架上。
d)标准比较方式:绕在两个骨架上,其中一个线圈中放入已经样品,另一个用来进行实际检测。
(3)按检测线圈的电气连接分类:
a)自感方式:检测线圈使用一个绕组,既起激励作用又起检测作用。
b)互感方式:激励绕组和检测绕组分开。
c)参数型式:线圈本身是电路的一个组成部分。
涡流检测原理
涡流检测,本质上是利用电磁感应原理。
无论什么原因,只要穿过闭合回路所包围曲面的磁通量发生变化,回路中就会有电流产生,这种由于回路磁通量变化而激发电流的现象叫做电磁感应现象,回路中所产生的电流叫做感应电流。
电路中含有两个相互耦合的线圈,若在原边线圈通以交流电,在电磁感应的作用下,在副边线圈中产生感应电流;反过来,感应电流又会影响原边线圈中的电流和电压的关系。如下图所示:
涡流检测的基本工作原理:
当载有交变电流的试验线圈靠近导体工件时,由于线圈产生的交变磁场会使导体感生出电流(即涡流)。涡流的大小、相位及流动形式受到工件性质(电导率、磁导率、形状、尺寸)及有无缺陷的影响产生变化,反作用于磁场使线圈的电压和阻抗发生变化。
因此通过仪器测出试验线圈电压或阻抗的变化,就可以判断被检工件的性质、状态及有无缺陷。
涡流检测特点
1、适用范围
a)工艺检查和最终产品检测:在制造工艺过程中进行质量控制,或在成品剔除不合格品。
b)在役检测:为机械零部件及热交换管等设施进行定期检验。
c)其他应用:金属薄板及涂层的测厚、材质分选、电导率测量等。
2、涡流检测的优点
a)检测时既不需要接触工件也不需要耦合剂,可在高温下进行检测。同时探头可延伸至远处检测,可有效对工件的狭窄区域及深孔壁等进行检测。
b)对表面和近表面缺陷的检测灵敏度很高。
c)对管、棒、线材的检测易于实现高速、高效率的自动化检测,可对检测结果进行数字化处理,然后储存、再现及数据处理。
3、涡流检测的局限
a)只适用于导电金属材料或能感生涡流的非金属材料的检测。
b)只适用于检测工件表面及近表面缺陷,不能检测工件深层的内部缺陷。
c)涡流效应的影响因素多,目前对缺陷的定性和定量还比较困难。
五:磁粉检测(MT)的原理和特点
磁粉检测(Magnetic ParticleTesting),业内人士简称MT,是工业无损检测(Nondestructive Testing)的一种成熟的无损检测方法,在航空航天、兵器、船舶、火车、汽车、石油、化工、锅炉压力容器、压力管道等各个领域都得到广泛应用。
磁粉检测主要的应用是探测铁磁性工件表面和近表面的宏观几何缺陷,例如表面气孔、裂纹等。
按照不同特征,可将磁粉检测分为多种不同的方法:
(1)按施加磁粉的时间分为:连续法和剩磁法。
a)连续法:磁化工件的同时,施加磁粉。
b)剩磁法:先磁化工件,停止磁化后利用工件的剩磁,然后再施加磁粉。
(2)按显示材料,分为荧光法(Fluorescent)和非荧光法(Non-Fluorescent)。
a)荧光法:采用荧光磁粉,在黑光灯下观察磁痕。
b)非荧光法:采用普通黑色磁粉或者红色磁粉,在正常光照条件下观察磁痕。
(3)按磁粉的载体,分为湿法和干法。
a)湿法:磁粉的载体为液体(油或水)。
b)干法:直接以干粉的形式喷涂在工件上,只有特殊情况下才会采用这种方法。
举个例子,一般压力容器焊缝的磁粉检测会采用:湿法+非荧光法+连续法,这意味着我们将在正常的光照条件下,把黑色或者红色的磁粉分散在以水或者油的载体(即磁悬液),然后磁化焊缝的同时施加磁悬液,一边磁化一边观察是否有磁痕形成。
下面就是典型的湿法+非荧光法+连续法的磁粉检测,工艺为:交叉磁轭机磁化,配合黑色磁粉。
磁粉检测裂纹缺陷示意图,球罐的环形对接焊缝,磁痕粗大明显。
下图为一条对接焊缝管,图片来源于网络,磁痕没有上图那么明显,大家还能找到磁痕吗?
磁粉检测原理
磁粉检测,本质上是利用材料磁性变化。
当铁磁性工件被磁化时,若工件材质是连续、均匀的,则工件中的磁感应线将基本被约束在工件内,几乎没有磁感应线从被检表面穿出或进入工件,被检表面不会形成明显的泄漏磁场。如下图所示:
无泄漏磁场
但当工件的表面存在着切割磁力线的不连续性时,由于不连续性部位的磁导率低,磁阻很大,磁感应线将会改变途径。
大部分改变途径的磁通将优先从磁阻较低的不连续性底部的工件内通过,当工件磁感应强度比较大,工件不连续性处底部难以接受更多的磁通,或不连续性部位的尺寸较大时,部分磁通就会从不连续性部位逸出工件,越过不连续性上方然后再进入工件,这种磁通的泄漏同时会使不连续性两侧部位产生了磁极化,形成所谓的漏磁场。如下图所示:
存在泄磁场
磁粉检测基本原理:当工件被磁化后,若工件表面及近表面存在不连续性(如裂纹),就会在不连续性部位的表面形成泄漏磁场(即漏磁场),通过漏磁场吸附、聚集检测过程施加的磁粉,最终形成磁痕,便可提供缺陷的位置、形状、大小的显示。
磁粉检测特点
1、适用范围
磁粉检测可用于板材、型材、管材、锻造毛坯等原材料和半成品的检查,也可用于锻钢件、焊接件、铸钢件加工制造过程工序间检查和最终加工检查,还可用于重要设备机械、压力容器、石油储罐等工业设施在役检查等。
2、磁粉检测的优点
a)能直观显示缺陷的形状、位置、大小和严重程度,并可大致确定缺陷的性质。
b)具有高灵敏度,磁粉在缺陷上聚集形成的磁痕有放大作用,可检出缺陷的最小宽度约0.1μm ,能发现深度约10μm的微裂纹。
c)适应性好,几乎不受试件大小和形状的限制,综合采用多种磁化方法,可检测工件上的各个方向的缺陷。
d)检测速度快,工艺简单,操作方便,效率高,成本低。
3、磁粉检测的局限
a)只能用于检测铁磁性材料,如碳钢、合金结构钢等,不能用于检测非铁磁性材料,如镁、铝、铜、钛及奥氏体不锈钢等。
b)只能用来检测表面和近表面缺陷,不能检测埋藏较深的缺陷,可检测的皮下缺陷的埋藏深度一般不超过1~2mm。
c)难于定量确定缺陷埋藏的深度和缺陷自身的高度。
d)通常采用目视法检查缺陷,磁痕的判断和解释需要有技术经验和素质。