
所有多边形内角的和等于边数减2再乘180度,则正多边形各内角度数等于内角和除以边数。
正多边形是指二维平面内各边相等,各角也相等的多边形,也叫正多角形。各边相等,各角也相等的多边形叫做正多边形。正多边形的外接圆的圆心叫做正多边形的中心。正多边形的外接圆的半径叫做半径。中心到圆内切正多边形各边的距离叫做边心距。正多边形各边所对的外接圆的圆心角都相等,这个圆心角叫做正多边形的中心角。
设正多边形的边数为n(例如正三角形n=3)
则正多变形的内角和为 180*(n-2)
正多边形的每个内角为 180*(n-2)/3
因此,正三角形内角为60度,正四边形内角为90度,正五边形内角为108度,正六边形内角为120度
正多边形的内角的和公式为(n-2)×180°(n大于等于3且n为整数),则正多边形各内角度数为:(n - 2)×180°÷n。多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。

n边形的内角和公式为(n-2)×180°(n大于等于3且n为整数)。任意正多边形的外角和=360°正多边形任意两条相邻边连线所构成的三角形是等腰三角形
多边形内角和定理证明:
在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。
所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)。
即n边形的内角和等于(n-2)×180°.(n为边数)。
正多边形的内角度数可由如下定理求得:
定理 多边形内角和定理n边形的内角的和等于: (n - 2)×180°,则正多边形各内角度数为: (n - 2)×180°÷n
例如;五边形为(5- 2)×180°=540°
多边形内角和=180(n-2)度,n指的是多边形的边数。正多边形的n个内角大小相同,所以正多边形每个内角度数=180(n-2)÷n=180(n-2)/n (度)。
多边形内角和定理证明:
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。
所以n边形的内角和是n·180°-2×180°=(n-2)·180°(n为边数)。
即n边形的内角和等于(n-2)×180°(n为边数)。
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形。
因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)
所以n边形的内角和是(n-2)×180°。
以上就是关于正多边形的内角度数,用正三角形,正四边形和正六边形的全部内容,以及正多边形的内角度数的相关内容,希望能够帮到您。