
中垂线的性质为:
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴,垂直平分线将一条线段从中间分成左右相等的两条线段,并且与所分的线段垂直。
判定定理为:
1、直线过线段中点。
2、直线垂直于线段。
垂直平分线 垂直平分线,简称“中垂线”,是初中几何学科中非常重要的一部分。
垂直平分线的概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
垂直平分线的性质:1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
如图:直线MN即为线段AB的垂直平分线。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧计方法:点到线段两端距离相等。
可以通过全等三角形证明
垂直平分线,
简称“中垂线”,是初中几何学科中占有绝大部分的非常重要的一部分。
垂直平分线的定义:经过某一条线段的中点,并且垂直于这条中线的直线,叫做这条线段的垂直平分线(中垂线)。
垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
垂直平分线的判定:必须同时满足(1)直线过线段AB中点C,(2)直线CD⊥线段AB
中垂线的性质:垂直平分线垂直且平分其所在线段、垂直平分线上任意一点,到线段两端点的距离相等。 扩展资料 中垂线的`性质有很多,比如垂直平分线垂直且平分其所在线段、垂直平分线上任意一点,到线段两端点的距离相等、垂直平分线的判定:必须同时满足(1)直线过线段中点;(2)直线⊥线段。
中垂线的性质如下:
1、垂直平分线垂直且平分其所在线段。
2、垂直平分线上任意一点,到线段两端点的距离相等。
3、三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
4、垂直平分线的判定:必须同时满足直线过线段中点,直线垂直线段。

中垂线判定方法
1、利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线。
2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
以上就是关于什么是中垂线,中垂线性质是什么的全部内容,以及中垂线性质是什么的相关内容,希望能够帮到您。