
直角三角形相似的判定定理。
1、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
2、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
根据三角形相似,可以得出两个关系式:①AD/AC=AC/AB ②AD/CD=CD/BD .由①可知:AC2=AD*AB =4AD2 .由②可知:CD2=AD*BD=3AD2.
所以有:CD2/AC2=3AD2/4AD2 即 CD/AC的比值为 二分之根号三
相似三角形的判定:
(1)平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似。
(2)如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似)。
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似)。
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。
常用的判定定理:
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA)
判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS)
判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS)
判定定理4:两三角形三边对应平行,则两三角形相似。(简叙为:三边对应平行,两个三角形相似。)
判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。(简叙为:斜边与直角边对应成比例,两个直角三角形相似。)(HL)
三角形相似的判定方法6种:
一、定义法:三个对应角相等,三条对应边成比例的两个三角形相似。
二、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
三、判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似。
四、判定定理:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似。
五、判定定理:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似。
直角三角形判定相似:直角三角形除了直角外,再有一个角相等,两个直角三角形相似。其余的相似判定和三角形相似判定一样。
以上就是关于直角三角形相似判定通俗点,相似直角三角形边长比例关系公式的全部内容,以及直角三角形相似判定通俗点的相关内容,希望能够帮到您。