
转动惯量等于m乘以r乘以r。其中m是质点质量,r是质点和转轴的垂直距离。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态无关。
转动惯量,又称惯性距(俗称惯性力矩,易与力矩混淆),通常以Ix、Iy、Iz表示,单位为 kg * m^2,可说是一个物体对于旋转运动的惯性。
对于一个质点,I = mr^2,其中 m 是其质量,r 是质点和转轴的垂直距离。 惯性矩是一个物理量,通常被用作述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为千克每平方米(kg·m^2)。Ix、Iy、Iz是通过截面所设立的x、y、x轴的惯性距的量,x、y、z轴的设立根据截面不同可以有不同的设立方法。如果是求梁截面的惯性矩,则要根据梁截面的特点来设立。一般矩形、圆心等形状可以用公式直接套用。
圆形管道截面惯性矩公式Iz=3.14d4/64中d是指直径,不可能是壁厚。“Iz=3.14d4/64”这个公式是实心圆对以某一直径为轴的截面惯性矩公式。圆形管道的截面是一个圆环,它对直径的惯性矩公式是:Iz=3.14(D4-d4)/64 , 式中D——外径,d——内径。d4是表示d的4次方, D4是表示D的4次方。
假设受拉区混凝土不参与工作,所以计算是设受压区高度x,受压区混凝土面积对中性轴取矩等于受拉钢筋换算截面对中性轴取矩,列出一元二次方程就可求得x了

转动惯量的表达式为

若刚体的质量是连续分布的,则转动惯量的计算公式可写成

(式中mi表示刚体的某个质元的质量,r表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号或积分号遍及整个刚体。)
转动惯量的量纲为[L]²[M],在SI单位制中,它的单位是kg·m²。此外,计算刚体的转动惯量时常会用到平行轴定理、垂直轴定理(亦称正交轴定理)及伸展定则。

扩展资料
质量分布于中心点的天体(比如黑洞),无量纲转动惯量为0;质量分布于球壳上的天体(不存在),无量纲转动惯量为2/3;质量分布于赤道上的天体(也不存在),无量纲转动惯量为1。
均匀球体,无量纲转动惯量为2/5;均匀高速自转流体椭球,无量纲转动惯量略大于0.4;不均匀球体:普通星球通常是密度较大的物质分布在核心(比如铁核),因此无量纲转动惯量都略小于0.4。
描述面积绕同它垂直的互相平行诸转轴的转动惯量之间的关系有如下的平行轴定理:面积对于一轴的转动惯量,等于该面积对于同此轴平行并通过形心之轴的转动惯量加上该面积同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此面积绕过形心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
圆盘转动惯量公式:J=m*r^2,转动惯量(MomentofInertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。

平行轴定理:
一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加。
利用平行轴定理可知,在一组平行的转轴对应的转动惯量中,过质心的轴对应的转动惯量最小。垂直轴定理一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
以上就是关于转动惯量的公式,转动惯量实验中原理公式是什么的全部内容,以及转动惯量的公式的相关内容,希望能够帮到您。