
整数乘法的意义是求几个相同加数的和的简便运算。除法是四则运算之一。已知两个因数的积与其中一个非零因数,求另一个因数的运算,叫做除法。两个数相除又叫做两个数的比。若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c÷b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
整数(integer)是正整数、零、负整数的集合。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
整数除法的意义,是已知两个因数的积与其中一个因数,求另一个因数的运算。
或者可以这样理解
把单位“1”分成的份数
如10除以5=2
10就是单位“1”
5就是每份的个数
2就是被分成的个数
整数除法的意义与分数除法的意义相同,都是:已知两个因数的积与其中的一个因数,求另一个因数的运算。
能被11整除的数的特征:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
例如:判断491678能不能被11整除.
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12 23-12=11
因此,491678能被11整除。这种方法叫"奇偶位差法"。
除上述方法外,还可以用割减法进行判断。即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除。
又如:判断583能不能被11整除。
用583减去11的50倍(583-11×50=33)余数是33,33能被11整除,583也一定能被11整除。

扩展资料:
若整数b除以非零整数a,商为整数,且余数为零, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”。a叫做b的约数(或因数),b叫做a的倍数。整除属于除尽的一种特殊情况。
整除与除尽既有区别又有联系。除尽是指数a除以数b(b≠0)所得的商是整数或有限小数而余数是零时,我们就说a能被b除尽(或说b能除尽a)。
因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了。它们之间的联系就是整除是除尽的特殊情况。
参考资料:
除法是与乘法相反的运算。在前三年半学生经过大量的整数除法计算和应用题的练习,对除法的意义已有了一定的感性认识,这里在已学的基础上对除法的意义加以概括,使学生有更明确的认识。和讲减法的意义一样,教材也是通过三道应用题为载体,从除法和乘法的联系概括出除法的意义。教材对1、0在除法算式的特性做了比较系统的总结。其中0为什么不能作除数这部分知识是教学难点,以后在学习分数、约分、比等知识时经常要用到。
以上就是关于整数除法的意义是什么的全部内容,以及整数除法的意义是什么的相关内容,希望能够帮到您。