裂项公式原理,裂项公式是什么时候学的
admin
2023-07-10 02:08:41

裂项公式原理

裂项公式原理,裂项公式是什么时候学的图1

裂项公式原理:将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。通项分解(裂项)倍数的关系。通常用于代数,分数,有时候也用于整数。

数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

裂项公式是什么时候学的

裂项公式是:1/[n(n+1)]=(1/n)- [1/(n+1)]。1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]。1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}。

1/(3n-2)(3n+1)

1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)

只要是分式数列求和,可采用裂项法。裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数。

裂项公式原理,裂项公式是什么时候学的图2

裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧。

例子:

求和:1/2+1/6+1/12+1/20

=1/(1*2)+1/(2*3)+1/(3*4)1/(4*5)

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)

=1-1/5=4/5

裂项相消法万能公式推导过程

裂项相消法万能公式为:1/[n(n+1)]=(1/n)-[1/(n+1)]。

裂项相消法在分数计算中经常用到,先将算式中的项进行拆分,拆成两个或多个数字单位的和或差,拆分后的项可以前后抵消。裂项法主要有“裂差”与“裂和”两种。

裂项公式原理,裂项公式是什么时候学的图3

裂差法:满足这个条件的分数计算式可以采用裂差法。分母为两个自然数的乘积,分子是分母乘式中乘数与被乘数的差。

裂项公式原理,裂项公式是什么时候学的图4

裂和法:满足这个条件的分数计算式可以采用裂和法。分母为两个自然数的乘积,分子是分母乘式中乘数与被乘数的和。

数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。

三大特征:分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因 数“首尾相接” 分母上几个因 数间的差是一个定值。裂差型运算的核心环节是“两两抵消达到简化的目的”。

分数裂项基本公式

基本公式为:

常用公式:

(1)1/[n(n+1)]=(1/n)- [1/(n+1)]

(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5) n·n!=(n+1)!-n!

(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]

(7)1/(√n+√n+1)=√(n+1)-√n

(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]

裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。

举例:

【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.

解:an=1/[n(n+1)]=(1/n)- [1/(n+1)](裂项)

则 Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)- [1/(n+1)](裂项求和)

= 1-1/(n+1)

= n/(n+1)

以上就是关于裂项公式原理,裂项公式是什么时候学的的全部内容,以及裂项公式原理的相关内容,希望能够帮到您。

相关内容

热门资讯

阿西吧是什么意思 阿西吧相当于... 即使你没有受到过任何外语培训,你也懂四国语言。汉语:你好英语:Shit韩语:阿西吧(아,씨발! )日...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...
应用未安装解决办法 平板应用未... ---IT小技术,每天Get一个小技能!一、前言描述苹果IPad2居然不能安装怎么办?与此IPad不...
脚上的穴位图 脚面经络图对应的... 人体穴位作用图解大全更清晰直观的标注了各个人体穴位的作用,包括头部穴位图、胸部穴位图、背部穴位图、胳...
猫咪吃了塑料袋怎么办 猫咪误食... 你知道吗?塑料袋放久了会长猫哦!要说猫咪对塑料袋的喜爱程度完完全全可以媲美纸箱家里只要一有塑料袋的响...