z的共轭复数表示为两个实部相等,虚部互为相反数,当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身,在数学中,虚数就是形如a+bi的数。
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+bi的实部a可对应平面上的横轴。
Z上面一横表示Z的共轭复数
例如一个复数z=a+bi
那么共轭复数“z横杠”=a-bi
共轭复数的算法举例说明:
已知3+4i,求它的共轭复数:
(1)共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。
(2)实数部分3不变,照写,虚数部分变成4的相反数-4。
(3)整合得到:3+4i的共轭复数为3-4i。
需要注意的问题:符号的问题,共轭复数虚部互为相反数,别写相同了。
复数z的共轭复数记作z(上加一横),有时也可表示为Z*。同时, 复数z(上加一横)称为复数z的复共轭。
扩展资料:
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i。
复数的减法法则:两个复数的差为实数之差加上虚数之差(乘以i)
即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
参考资料:
共轭复数
两个实部相等,虚部互为相反数的复数互为共轭复数。复数z的共轭复数记作zˊ。
根据定义,若z=a+bi(a,b∈R),则
zˊ=a-bi。共轭复数所对应的点关于实轴对称(详见附图)。
1.代数特征:
(1)|z|=|z′|;
(2)z+z′=2a(实数),z-z′=2bi;
(3)z•
z′=|z|^2=a^2+b^2(实数);
(4)z〃=z.
2.运算特征:
(1)(z1+z2+z3+……+zn)′=z1′+z2′+z3′+……+zn′
(2)
(z1-z2)′=z1′-z2′
(3)
(z1·z2)′=z1′·z2′·z3′·……·zn′
(4)
(z1/z2)′=z1′/z2′
(z2≠0)
ps:z′表示复数z的共轭复数(实际形式为z上一横),z〃表示复数z的共轭复数的共轭复数(为z上两横)
(1)|z|=|z′|;
(2)z+z′=2a(实数),z-z′=2bi;
(3)z• z′=|z|^2=a^2+b^2(实数);
(4)z〃=z.
以上就是关于z的共轭复数怎么表示,复数z上面加一横代表什么的全部内容,以及z的共轭复数怎么表示的相关内容,希望能够帮到您。
下一篇:属牛男孩取名用字大全(有寓意)