
数列收敛的充要条件:数列收敛的充要条件:设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数N=N(ε),使得当n>N时,有|Xn-A|
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
第一个重要极限


第二个重要极限

扩展资料:
若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。如果一个数列’收敛‘(有极限),那么这个数列一定有界。
如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
lim(x趋向于0+)x^tanx
=e^lim(x趋向于0+)lnx^tanx
=e^lim(x趋向于0+)lnx*tanx
=e^lim(x趋向于0+)lnx/cotx (∞/∞)
=e^lim(x趋向于0+)(1/x)/(-csc^2x)
=e^lim(x趋向于0+)-sinx
=e^0
=1
极限函数的意义:
在区间(a-ε,a+ε)之外至多只有N个(有限个)点所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a。
设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。这种渐进稳定性与收敛性是等价的,即为充分必要条件。
与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
证明=>
{an}收敛于a=>对任意ε>0,存在N>0,对任意n>N时,有|an-a|<ε(下面使用这个结论)
所以对于子列{a2n-1},沿用上面由ε确定的N,显然n>N时有2n-1>n,所以对任意ε>0,存在N,对任意n>N,|a(2n-1)-a|<ε,即证{a2k-1}收敛
同样对于子列{a2n},沿用上面由ε确定的N,显然n>N时有2n>n,所以对任意ε>0,存在N,对任意n>N,|a2n-a|<ε,即证{a2n}收敛
证明<=
{a2n-1}收敛=>对任意ε>0,存在N1>0,对任意n>N1时,有|a(2n-1)-a|<ε
{a2n}收敛=>对任意ε>0,存在N2>0,对任意n>N2时,有|a2n-a|<ε
取N=max{N1,N2},则对任意ε>0,对任意n>N时,有|an-a|<ε
即证{an}收敛
数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a| 如果数列{Xn}收敛,那么该数列必定有界。无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。 扩展资料: 用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。 其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不一定有解析式,同样数列也并非都有通项公式。 其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。 以上就是关于数列收敛的充要条件的全部内容,以及数列收敛的充要条件的相关内容,希望能够帮到您。