级数收敛的充要条件,高数无穷级数难不难
admin
2023-07-11 18:16:12

级数收敛的充要条件

级数收敛的充要条件,高数无穷级数难不难图1

级数收敛的充要条件:级数的前n项和Sn满足A=lim(n->+∞)。级数是指将数列的项依次用加号连接起来的函数。典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──函数。

数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

高数无穷级数难不难

这个关系一般是:级数收敛的必要条件是加项极限为0,也可以说成是:数列极限为0的一个充分条件是它组成的级数收敛。

级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性。

原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项的极限为0。

扩展资料:

证明“在级数的前面部分去掉、加上有限项,不会改变级数的收敛性”,因为其他情形(即在级数中去掉、加上或改变有限项的情形)都可以看成在级数的前面部分先去掉有限项,然后再加上有限项的结果。

一般的级数u1+u2+...+un+...它的各项为任意级数。

如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。如果级数Σun收敛,而Σ∣un∣发散,则称级数Σun条件收敛。

级数的部分和数列有界是什么意思

级数的部分和数列有界是该级数收敛的必要条件。

相关介绍:

无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。例如数列{(-1)^n},显然是有界的,但也是发散的。所以有界不是收敛的充分条件。

收敛级数的基本性质主要有:

原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项的极限为0。

级数收敛的充要条件,高数无穷级数难不难图2

扩展资料

级数收敛主要特点:

1、级数的每一项同乘一个不为零的常数后,它的收敛性不变。

2、两个收敛级数逐项相加或逐项相减之后仍为收敛级数。

3、在级数中去掉、加上或改变有限项,不会改变级数的收敛性。

4、如果加括号后所成的级数发散,则原级数也发散。

5、级数的每一项同乘一个不为零的常数后,它的收敛性不变。

6、两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性。

交错级数收敛的充要条件

如下:

等比级数若收敛,则其公比q的绝对值必小于1。

故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(|q|<1),此时Sn=a1/(1-q)。

q大于1时等比级数发散。

性质

①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;

②在等比数列中,依次每 k项之和仍成等比数列;

③若m、n、q∈N,且m+n=2q,则am×an=(aq)2;

④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);

⑤在等比数列中,首项a1与公比q都不为零;

⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1)。

部分和数列有极限是级数收敛的

级数是否收敛是通过部分和数列的极限来定义的:

如果级数的部分和数列的极限存在,则称此级数收敛,并且该极限成为级数的和。否则称该级数发散。

既然是定义,就一定是充要条件。

级数收敛的充要条件是它的部分和数列有极限。

以上就是关于级数收敛的充要条件,高数无穷级数难不难的全部内容,以及级数收敛的充要条件的相关内容,希望能够帮到您。

相关内容

热门资讯

北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...
世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...
猫咪吃了塑料袋怎么办 猫咪误食... 你知道吗?塑料袋放久了会长猫哦!要说猫咪对塑料袋的喜爱程度完完全全可以媲美纸箱家里只要一有塑料袋的响...