
方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定。
方差(variance)是在概率论和统计方差衡量随机变量或一组数据是离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差的计算公式:
设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2……(xn-x)2,那么就可以用他们的平均数对其进行衡量,公式为:
该公式主要用来衡量这组数据的波动大小,并把它叫做这组数据的方差。为了简便我们也可以将其记做:
如果一组数据的方差越小,那么就证明该组数据的稳定性较高。
常见方差公式:
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c²)D(X)。
(3)设X与Y是两个随机变量,则:D(X+Y)=D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}。
特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。
方差是各个数据与平均数之差的平方的和的bai平均数,公式为:
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
方差的概念与计算公式,例如两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。
扩展资料
平方差:a²-b²=(a+b)(a-b)。文字表达式:两个数的和与这两个数的差的积等于这两个数的平方差。此即平方差公式
标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。
方差是统计中的一个重要定义。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

方差:一组数据中各个数据与平均数的差的平方的和的平均数。
平均数为:(3+4+5)/3=4。
方差为:1/3*[(3-4)^2+(4-4)^2+(5-4)^2]=1/3*(1+0+1)=2/3。
正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
解:根据上节例2给出的分布律,计算得到工人乙废品数少,波动也小,稳定性好。

扩展资料:
性质:
1、设C为常数,则D(C) = 0(常数无波动);
2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)。
3、若X 、Y 相互独立,则证:记则前面两项恰为 D(X)和D(Y),第三项展开后为当X、Y 相互独立时,故第三项为零。
以上就是关于什么是方差公式,方差公式是什么的全部内容,以及什么是方差公式的相关内容,希望能够帮到您。