
等比数列前n项是前面的数字,q是公比。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比。
公比通常用字母q表示(q≠0),等比数列a1≠0。
其中{an}中的每一项均不为0。
注:q=1时,an为常数列。
等比数列前n项和公式:当q≠1时 ,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q);当q=1时,Sn=na1(其中,a1为首项,an为第n项,d为公差,q为等比)。除此之外,Sn为前n项和。
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。
等比数列通式若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
等比数列有如下性质:(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列。
(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{c^an},c是常数,{an*bn},{an/bn}是等比数列,公比为c^q1,q1q2,q1/q2。
等比数列前n项和公式为:

等比数列在生活中的应用:等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利,即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”,按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。
等比数列:
通项公式:an=a1q^(n-1)。
求和公式1:sn=a1(1-q^n)/(1-q)(q≠1)。
求和公式2:sn=(a1-anq)/(1-q)(q≠1)。
中间公式:如果m+n=2k;m,n,k∈n;则对于等比数列有:(ak)²=am*an。
相等公式:如果m+n=p+q;m,n,p,q∈n,则对于等差数列:am*an=ap*aq。
等比数列是非常重要的数学概念,下面我为大家总结整理了等比数列前n项和公式,希望对大家有所帮助。
等比数列前n项和公式及推导过程
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。
推导如下:
因为an = a1q^(n-1)
所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)
qSn =a1*q^1+a1q^2+...+a1*q^n (2)
(zhi1)-(2)注意(1)式的第一项不变。
把(dao1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。
于是得到
(1-q)Sn = a1(1-q^n)
即Sn =a1(1-q^n)/(1-q)。
等比数列的性质
①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列
以上就是关于等比数列前n项和公式,等比数列前n项和公式q是什么的全部内容,以及等比数列前n项和公式q是什么的相关内容,希望能够帮到您。