
特征根是数学中解常系数线性微分方程的一种通用方法。特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。
特征根法在求递推数列通项中的运用各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题需要用到。
特征根:
特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。
称为二阶齐次线性差分方程:
加权的特征方程。
特征向量:
A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。
式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。
令|A-λE|=0,求出λ值。
A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。
一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A – λI) v = 0 得到,其中v为待求特征向量,I为单位阵。
当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。
没有实特征值的一个矩阵的例子是顺时针旋转90度。
扩展资料
矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。
一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。“特征”一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。
参考资料:
求解一些数学问题(比如高中的数列、大学的矩阵、线性微分方程)的时候,我们可以按照某种格式写出它对应的一个多项式方程(比如二次、三次),这就是特征方程。特征方程的根叫特征根。求出特征根后还有后续的步骤。
特征根是数学中解常系数线性微分方程的一种通用方法。特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。例如 称为二阶齐次线性差分方程: 加权的特征方程。
特征方程是为研究相应的数学对象而引入的一些等式,它因数学对象不同而不同,包括数列特征方程、矩阵特征方程、微分方程特征方程、积分方程特征方程等等。
对于更高阶的线性递推数列,只要将递推公式中每一个
换成
,就是它的特征方程。
最后我们指出,上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。
扩展资料:
下面所介绍的仅仅是数列的特征方程。
一个数列:
设 有r,s使
所以
得
消去s就导出特征方程式
关于一阶线性递推数列: 其通项公式的求法一般采用如下的参数法, [2] 将递推数列转化为等比数列:
对于数列
,
设
化简得
与原递推式比较,得
将解得的t代入上式即得等比数列 ,用等比数列通项即可得出原数列 。
对于更高阶的线性递推数列,只要将递推公式中每一个
换成
,就是它的特征方程。
最后我们指出,上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。
参考资料:
以上就是关于特征根是什么意思,数学中特征数是什么意思的全部内容,以及特征根是什么意思的相关内容,希望能够帮到您。