
将一组计量资料按观察值大小分为不同组段,然后将各观察值归纳到各组段中,最后清点各组段的观察值个数(称频数),以表格形式表示之,称为频数分布表又称“频次分布表”,简称“频数表”。
制作频数分布表的两个基本原则:
第一,用来制作频数分布表的原始数据都能出现在该表中。
第二,任一个原始数据只能出现在该表的一个组中,不能同时兼属两个组中。
根据第二原则,制作频数分布表时,组与组之间应该有明确的界限,即组限,每组的起点称为组下限,而每组的止点称为组上限。由此可见,对计量资料而言,组限应是闭一开区间,而对计数资料而言,组限应是闭区间。根据第一原则,如果组限是由小到大的顺序排列的,则第一组的下限应小于等于原始数据资料的最小值,最后一组的上限应大于等于原始数据资料的最大值。反之则相反。
频数:
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数m称为事件A发生的频数。
频率:
比值m/n称为事件A发生的频率,用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
区别:
1、取值不同
频数又称次数。指变量值中代表某种特征的数(标志值)出现的次数。按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度。各组频数的总和等于总体的全部单位数。
某个组的频数与样本容量的比值也叫做这个组的频率。有了频数(或频率)就可以知道数的分布情况。
2、侧重点不同
一般称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则是每个小组的频数与数据总数的比值。在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频率中当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率.这种“频率稳定性”也就是通常所说的统计规律性。

3、分布不同
各个类别及其相应的频数全部列出来就是频数分布或称次数分布。将频数分布用表格的形式表现出来就是频数分布表。调查数据经分类整理后形成频数分布表。
在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
统计描述是用统计指标、统计图或统计表描述资料的分布规律及其数量特征。 频数表是统计描述中经常使用的基本工具之一。 1.频数表(frequency table)的编制 在观察值个数较多时,为了解一组同质观察值的分布规律和便于指标的计算,可编制频数分布表,简称频数表。 (1)求全距(range):找出观察值中的最大值与最小值,其差值即为全距(或极差),用R表示。 (2)确定组段和组距:根据样本含量的大小确定“组段”数,一般设8-15个组段,观察单位较少时组段数可相对少些,观察单位较多时组段数可相对多些,常用全距的1/10取整做组距,以便于汇总和计算。第一组段应包括全部观察值中的最小值,最末组段应包括全部观察值中的最大值,并且同时写出其下限与上限。各组段的起点和终点分别称为下限和上限,某组段包含下限,但不包含上限,其组中值为该组段的(下限+上限)/2。相邻两组段的下限之差称为组距。 (3)列表划记:确定组段界限,列成表2.1的形式,采用计算机或用划记法将原始数据汇总,得出各组段的观察例数,即频数,表中的第(1)、(3)栏即所需的频数表。 频数表2.频数分布的特征 由频数表可看出频数分布的两个重要特征:集中趋势(central tendency)和离散程度(dispersion)。身高有高有矮,但多数人身高集中在中间部分组段,以中等身高居多,此为集中趋势;由中等身高到较矮或较高的频数分布逐渐减少,反映了离散程度。对于数值变量资料,可从集中趋势和离散程度两个侧面去分析其规律性。 3.频数分布的类型 频数分布有对称分布和偏态分布之分。对称分布是指多数频数集中在中央位置,两端的频数分布大致对称。偏态分布是指频数分布不对称,集中位置偏向一侧,若集中位置偏向数值小的一侧,称为正偏态分布;集中位置偏向数值大的一侧,称为负偏态分布,如冠心病、大多数恶性肿瘤等慢性病患者的年龄分布为负偏态分布。临床上正偏态分布资料较多见。不同的分布类型应选用不同的统计分析方法。 4.频数表的用途 可以揭示资料分布类型和分布特征,以便选取适当的统计方法;便于进一步计算指标和统计处理;便于发现某些特大或特小的可疑值。
以上就是关于频数是什么,什么是频数分布表的全部内容,以及什么是频数分布表的相关内容,希望能够帮到您。