
分解质因数和短除法的区别是定义不同。每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。短除法是先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。后来,使用分解质因数法来分别分解两个数的因数,再进行运算。
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。小学数学定义:假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。
是的,短除法是分解质因数的一种方法。举个例子,如图,

还可以用树状图法,

是的。
分解质因数法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
短除法:短除法求最大约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。例如,求24、48、60的最大公约数。(24、48、60)=2×3×2=12

例如:
求12与18的最大公因数。以下如有约数出现则为因数
短除法例题
12的因数有:1、2、3、4、6、12。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
这种方法对求两个以上数的最大公因数数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。
相同:求最大公因数,分解质因数,都要用到短除法并且都是用短除法的商的乘积来表示的。
不同:求最大公因数时,至少是求两个数的公因数,且在用短除法计算时,商可以是质数也可以是合数,即最大公因数=两个数的所有公共因数的积;例如:求 8和12的公因数;

请点击输入图片描述而分解质因数只是
而分解质因数是,每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。分解质因数只针对合数。再求这个合数的质因数是要用短除法,但它的商必须质数。如:将360分解质因数:

360=2×3×2×3×5×2
短除法是求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
后来,使用分解质因数法来分别分解两个数的因数,再进行运算。之后又演变为短除法。短除法运算方法是先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止 。
使用短除法方法:
将除法中的除号(√)倒过来变成短除号(∟),在短除号的里边写上被除数,在短除号前面写上这个数的最小质因数作为除数去除被除数,将商写在短除号的下面,余下这个数(商)如果还有质因数,则还得继续用同样的方法再除。
即:得到的商做为新的被除数,用这个新的被除数的最小质因数做为除数去除它,依次类推,直到商是质数为止。如:
扩展资料:
在计算短除法时,还应该注意到以下的几点:
1、 除数和被除数随时都在变化。
2、 每一个除数必须是被除数的最小质因数。
3、 在写每一个短除号时都要往后移一点点,这样才美观且不容易出错。
4、如果是两个数,则在写除数的地方写两个数的最小公共质因数,用这这个数分别去除被除数,商分别写在这两个数的下面,余下的两个数如果还有公共质因数,则还得继续用同样的方法再除,依此类推,直到两个商互质为止。
以上就是关于短除法就是分解质因数,分解质因数和短除法有什么区别的全部内容,以及分解质因数和短除法有什么区别的相关内容,希望能够帮到您。