
求期望ex公式:EX^2=DX+EX^2。在概率论和统计学中,数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
概率,亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。
求期望ex公式:EX^2=DX+EX^2。在概率论和统计学中,数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
概率,亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。
要求EX^2,只知道EX还不够,至少要知道x是如何分布的,也即它的分布函数或者概率密度函数。
若X~N(1,3),则Dx=3,由DX=EX^2-(EX)^2及EX的值可以算出EX^2。若X~N(1,3),Y=3X+1,EY=E(3X+1)=3EX+1=3*1+1=4,DY=D(3X+1)=3^2*DX=9*DX=9*3=27,所以Y~N(4,27)。
3X与X+X+X没有区别。Z=X+Y的密度函数也要根据X,Y的概率密度f(xy)来求,一般用作图法计算,先算出分布函数F(Z),再算密度函数f(z),也可以直接积分计算:f(z)=将f(x,z-x)对x积分,这时的难点是确定好积分上下限。
如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。例如,一批电子元件的寿命、实际中常遇到的测量误差等都是连续型随机变量。
扩展资料:
能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。
x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。
数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差)。
数学期望(或期望值)是在统计意义下随机变量的一种数学术语,表示在多次随机试验中,每次试验的结果所带来的期望结果的总和。
对于一个离散的随机变量X,它的期望值(也称为数学期望)可以表示为:
E(X)=∑xP(X=x)
其中x是随机变量X的取值,P(X=x)是随机变量X取值为x的概率。
对于一个连续的随机变量X,它的期望值可以表示为:
E(X)=∫xf(x)dx
其中f(x)是随机变量X的概率密度函数。
期望值是随机变量的一个有用的数学特征,在统计意义下表示随机变量的中心位置。它是随机变量的平均值,但并不是所有的随机变量都有期望值,因为期望值只有在满足一定条件时才存在。
以上就是关于期望ex怎么的全部内容,以及期望ex怎么求的相关内容,希望能够帮到您。