
e(x)公式是方差计算公式,方差的概念与计算公式,例如两人的5次测验成绩如下:X:50,100,100,60,50,平均值E(X)=72;Y:73,70,75,72,70平均值E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。
其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]
于是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域。
对两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆开,再移项:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是 ∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u。
若随机变量X服从一个数学期望为μ、方差为的高斯分布,记为N(μ,)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。正态分布有两个参数,即均数(μ)和标准差(σ)。
μ是位置参数,当σ固定不变时, μ越大,曲线沿横轴,越向右移动;反之, μ越小,则曲线沿横轴,越向左移动。是形状参数,当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭。

扩展资料
1、正态分布优点
对于社会上遇到的大部分问题,其概率分布规律基本都满足正态分布,为了计算某种概率,我们就可以通过数学建模利用正态分布方便解决问题。
一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
在一定条件下可以利用正态分布近似估算二项分布和泊松分布。
2、正态分布缺点
无法近似估算符合几何分布的问题,无法精确解决离散数据概率。
D(X)指方差,E(x)指期望。
E(X)说简单点就是平均值,具体做法是求和然后除以数量。
D(X)就是个体偏离期望的差,再对这个差值进行的平方,最后求这些平方的期望。具体操作是,(个体-期望),然后平方,再对这些平方值求平均值.
D(X)=E[X-E(X)]^2
=E{X^2-2XE(X)+[E(X)]^2}
=E(X^2)-2[E(X)]^2+[E(X)]^2
D(X)指方差,E(x)指期望.
E(X)说简单点就是平均值,具体做法是求和然后除以数量.
D(X)就是个体偏离期望的差,再对这个差值进行的平方,最后求这些平方的期望.具体操作是,(个体-期望),然后平方,再对这些平方值求平均值.
D(X)=E[X-E(X)]^2
=E{X^2-2XE(X)+[E(X)]^2}
=E(X^2)-2[E(X)]^2+[E(X)]^2
D(X)指方差,E(X)指期望。E(X)说简单点就是平均值,具体做法是求和然后除以数量。D(X)=E[X-E(X)]^2=E{X^2-2XE(X)+[E(X)]^2}=E(X^2)-2[E(X)]^2+[E(X)]^2。
因为X服从二项分布B(n,p),所以E(X)=np,D(X)=npq而方差D(X)=E(X^2)-[E(X)]^2,因为E(X^2)=D(X)+[E(X)]^2=npq+(np)^2=np(q+np),即E(X^2)=np(np+q)
扩展资料:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且:
当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
以上就是关于Ex怎么计算,ex公式是什么的全部内容,以及e(x)公式是什么的相关内容,希望能够帮到您。
上一篇:懒人听书 怎么 自动播放下一集
下一篇:服从带来的可喜的消息是什么