R语言对回归模型进行协方差分析
创始人
2024-04-21 14:19:20

 目录

怎么做测试

协方差分析

拟合线的简单图解

模型的p值和R平方

检查模型的假设

具有三类和II型平方和的协方差示例分析

协方差分析

拟合线的简单图解

组合模型的p值和R平方

检查模型的假设


怎么做测试

具有两个类别和II型平方和的协方差示例的分析

本示例使用II型平方和 。参数估计值在R中的计算方式不同, 

Data = read.table(textConnection(Input),header=TRUE)

 

plot(x   = Data$Temp, y   = Data$Pulse, col = Data$Species, pch = 16,xlab = "Temperature",ylab = "Pulse")legend('bottomright', legend = levels(Data$Species), col = 1:2, cex = 1,    pch = 16)

协方差分析

Anova Table (Type II tests)Sum Sq Df  F value    Pr(>F)   Temp         4376.1  1 1388.839 < 2.2e-16 ***Species       598.0  1  189.789 9.907e-14 ***Temp:Species    4.3  1    1.357    0.2542    ### Interaction is not significant, so the slope across groups### is not different. model.2 = lm (Pulse ~ Temp + Species,data = Data)library(car)Anova(model.2, type="II")Anova Table (Type II tests)Sum Sq Df F value    Pr(>F)   Temp      4376.1  1  1371.4 < 2.2e-16 ***Species    598.0  1   187.4 6.272e-14 ***### The category variable (Species) is significant,### so the intercepts among groups are differentCoefficients:Estimate Std. Error t value Pr(>|t|)   (Intercept)  -7.21091    2.55094  -2.827  0.00858 **Temp          3.60275    0.09729  37.032  < 2e-16 ***Speciesniv  -10.06529    0.73526 -13.689 6.27e-14 ***###   but the calculated results will be identical.### The slope estimate is the same.### The intercept for species 1 (ex) is (intercept).### The intercept for species 2 (niv) is (intercept) + Speciesniv.### This is determined from the contrast coding of the Species### variable shown below, and the fact that Speciesniv is shown in### coefficient table above.nivex    0niv   1

拟合线的简单图解


plot(x   = Data$Temp, y   = Data$Pulse, col = Data$Species, pch = 16,xlab = "Temperature",ylab = "Pulse")

 

模型的p值和R平方

Multiple R-squared:  0.9896,  Adjusted R-squared:  0.9888F-statistic:  1331 on 2 and 28 DF,  p-value: < 2.2e-16

检查模型的假设

 

线性模型中残差的直方图。这些残差的分布应近似正态。

 

残差与预测值的关系图。残差应无偏且均等。 

### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2) 

具有三类和II型平方和的协方差示例分析

本示例使用II型平方和,并考虑具有三个组的情况。 

### --------------------------------------------------------------
### Analysis of covariance, hypothetical data
### --------------------------------------------------------------Data = read.table(textConnection(Input),header=TRUE)

plot(x   = Data$Temp, y   = Data$Pulse, col = Data$Species, pch = 16,xlab = "Temperature",ylab = "Pulse")legend('bottomright', legend = levels(Data$Species), col = 1:3, cex = 1,    pch = 16)

协方差分析

options(contrasts = c("contr.treatment", "contr.poly"))### These are the default contrasts in RAnova(model.1, type="II")Sum Sq Df   F value Pr(>F)   Temp         7026.0  1 2452.4187 <2e-16 ***Species      7835.7  2 1367.5377 <2e-16 ***Temp:Species    5.2  2    0.9126 0.4093   ### Interaction is not significant, so the slope among groups### is not different. Anova(model.2, type="II")Sum Sq Df F value    Pr(>F)   Temp      7026.0  1  2462.2 < 2.2e-16 ***Species   7835.7  2  1373.0 < 2.2e-16 ***Residuals  125.6 44 ### The category variable (Species) is significant,### so the intercepts among groups are differentsummary(model.2)Coefficients:Estimate Std. Error t value Pr(>|t|)   (Intercept)  -6.35729    1.90713  -3.333  0.00175 **Temp          3.56961    0.07194  49.621  < 2e-16 ***Speciesfake  19.81429    0.66333  29.871  < 2e-16 ***Speciesniv  -10.18571    0.66333 -15.355  < 2e-16 ***### The slope estimate is the Temp coefficient.### The intercept for species 1 (ex) is (intercept).### The intercept for species 2 (fake) is (intercept) + Speciesfake.### The intercept for species 3 (niv) is (intercept) + Speciesniv.### This is determined from the contrast coding of the Species### variable shown below.contrasts(Data$Species)fake nivex      0   0fake    1   0niv     0   1

拟合线的简单图解

 

组合模型的p值和R平方

Multiple R-squared:  0.9919,  Adjusted R-squared:  0.9913F-statistic:  1791 on 3 and 44 DF,  p-value: < 2.2e-16

检查模型的假设

hist(residuals(model.2), col="darkgray")

 

线性模型中残差的直方图。这些残差的分布应近似正态。

plot(fitted(model.2), residuals(model.2))

 

残差与预测值的关系图。残差应无偏且均等。 

 ### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2) 

相关内容

热门资讯

猫咪吃了塑料袋怎么办 猫咪误食... 你知道吗?塑料袋放久了会长猫哦!要说猫咪对塑料袋的喜爱程度完完全全可以媲美纸箱家里只要一有塑料袋的响...
世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...
demo什么意思 demo版本... 618快到了,各位的小金库大概也在准备开闸放水了吧。没有小金库的,也该向老婆撒娇卖萌服个软了,一切只...
苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...