(1)∑n=1∞1+n1+n2; (2)∑n=1∞1⋅3⋅⋅⋅⋅⋅(2n−1)2⋅4⋅⋅⋅⋅⋅2n;(3)∑n=1∞(−1)n−15n; (4)∑n=1∞n!nn.\begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}\frac{1+n}{1+n^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \sum_{n=1}^{\infty}\frac{1\cdot 3\cdot \ \cdot\cdot\cdot \ \cdot (2n-1)}{2\cdot 4 \cdot \ \cdot\cdot\cdot \ \cdot 2n};\\\\ &\ \ (3)\ \ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{5^n};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \sum_{n=1}^{\infty}\frac{n!}{n^n}. & \end{aligned} (1) n=1∑∞1+n21+n; (2) n=1∑∞2⋅4⋅ ⋅⋅⋅ ⋅2n1⋅3⋅ ⋅⋅⋅ ⋅(2n−1); (3) n=1∑∞5n(−1)n−1; (4) n=1∑∞nnn!.
(1)u1=1+11+12=1,u2=1+21+22=35,u3=1+31+32=25,u4=1+41+42=517,u5=1+51+52=313.(2)u1=2⋅1−12⋅1=12,u2=12⋅2⋅2−12⋅2=38,u3=38⋅2⋅3−12⋅3=516,u4=516⋅2⋅4−12⋅4=35128,u5=35128⋅2⋅5−12⋅5=63256.(3)u1=(−1)050=15,u2=(−1)152=−125,u3=(−1)253=1125,u4=(−1)354=−1625,u5=(−1)455=13125.(4)u1=1!11=1,u2=2!22=12,u3=3!33=29,u4=4!44=332,u5=5!55=24625.\begin{aligned} &\ \ (1)\ u_1=\frac{1+1}{1+1^2}=1,u_2=\frac{1+2}{1+2^2}=\frac{3}{5},u_3=\frac{1+3}{1+3^2}=\frac{2}{5},u_4=\frac{1+4}{1+4^2}=\frac{5}{17},u_5=\frac{1+5}{1+5^2}=\frac{3}{13}.\\\\ &\ \ (2)\ u_1=\frac{2\cdot 1-1}{2\cdot 1}=\frac{1}{2},u_2=\frac{1}{2}\cdot\frac{2\cdot 2-1}{2\cdot 2}=\frac{3}{8},u_3=\frac{3}{8}\cdot \frac{2\cdot 3-1}{2\cdot 3}=\frac{5}{16},u_4=\frac{5}{16}\cdot \frac{2\cdot 4-1}{2\cdot 4}=\frac{35}{128},\\\\ &\ \ \ \ \ \ \ \ u_5=\frac{35}{128}\cdot \frac{2\cdot 5-1}{2\cdot 5}=\frac{63}{256}.\\\\ &\ \ (3)\ u_1=\frac{(-1)^0}{5^0}=\frac{1}{5},u_2=\frac{(-1)^1}{5^2}=-\frac{1}{25},u_3=\frac{(-1)^2}{5^3}=\frac{1}{125},u_4=\frac{(-1)^3}{5^4}=-\frac{1}{625},u_5=\frac{(-1)^4}{5^5}=\frac{1}{3125}.\\\\ &\ \ (4)\ u_1=\frac{1!}{1^1}=1,u_2=\frac{2!}{2^2}=\frac{1}{2},u_3=\frac{3!}{3^3}=\frac{2}{9},u_4=\frac{4!}{4^4}=\frac{3}{32},u_5=\frac{5!}{5^5}=\frac{24}{625}. & \end{aligned} (1) u1=1+121+1=1,u2=1+221+2=53,u3=1+321+3=52,u4=1+421+4=175,u5=1+521+5=133. (2) u1=2⋅12⋅1−1=21,u2=21⋅2⋅22⋅2−1=83,u3=83⋅2⋅32⋅3−1=165,u4=165⋅2⋅42⋅4−1=12835, u5=12835⋅2⋅52⋅5−1=25663. (3) u1=50(−1)0=51,u2=52(−1)1=−251,u3=53(−1)2=1251,u4=54(−1)3=−6251,u5=55(−1)4=31251. (4) u1=111!=1,u2=222!=21,u3=333!=92,u4=444!=323,u5=555!=62524.
(1)∑n=1∞(n+1−n);(2)11⋅3+13⋅5+15⋅7+⋅⋅⋅+1(2n−1)(2n+1)+⋅⋅⋅;(3)sinπ6+sin2π6+⋅⋅⋅+sinnπ6+⋅⋅⋅;(4)∑n=1∞ln(1+1n).\begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n});\\\\ &\ \ (2)\ \ \frac{1}{1\cdot 3}+\frac{1}{3\cdot 5}+\frac{1}{5\cdot 7}+\cdot\cdot\cdot+\frac{1}{(2n-1)(2n+1)}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ sin\ \frac{\pi}{6}+sin\ \frac{2\pi}{6}+\cdot\cdot\cdot+sin\ \frac{n\pi}{6}+\cdot\cdot\cdot;\\\\ &\ \ (4)\ \ \sum_{n=1}^{\infty}ln\left(1+\frac{1}{n}\right). & \end{aligned} (1) n=1∑∞(n+1−n); (2) 1⋅31+3⋅51+5⋅71+⋅⋅⋅+(2n−1)(2n+1)1+⋅⋅⋅; (3) sin 6π+sin 62π+⋅⋅⋅+sin 6nπ+⋅⋅⋅; (4) n=1∑∞ln(1+n1).
(1)因为sn=(2−1)+(3−2)+⋅⋅⋅+(n+1−n)=n+1−1,limn→∞sn=∞,根据定义可知级数∑n=1∞(n+1−n)发散.(2)因为un=1(2n−1)(2n+1)=12(12n−1−12n+1),则sn=12[(1−13)+(13−15)+⋅⋅⋅+(12n−1−12n+1)]=12(1−12n+1),limn→∞sn=12,所以根据定义可知级数收敛.(3)因为un=sinnπ6=2sinπ12sinnπ62sinπ12=cos2n−112π−cos2n+112π2sinπ12,则sn=12sinπ12[(cosπ12−cos3π12)+(cos3π12−cos5π12)+⋅⋅⋅+(cos2n−112π−cos2n+112π)]=12sinπ12(cosπ12−cos2n+112π),当n→∞时,cos2n+112π极限不存在,所以sn的极限不存在,级数发散.(4)因为sn=ln2+ln32+ln43+⋅⋅⋅+lnn+1n=ln(n+1),limn→∞sn=∞,所以级数发散.\begin{aligned} &\ \ (1)\ 因为s_n=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+\cdot\cdot\cdot+(\sqrt{n+1}-\sqrt{n})=\sqrt{n+1}-1,\lim_{n\rightarrow \infty}s_n=\infty,根据定义可知\\\\ &\ \ \ \ \ \ \ \ 级数\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})发散.\\\\ &\ \ (2)\ 因为u_n=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right),则\\\\ &\ \ \ \ \ \ \ \ s_n=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdot\cdot\cdot+\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\right]=\frac{1}{2}\left(1-\frac{1}{2n+1}\right),\lim_{n \rightarrow \infty}s_n=\frac{1}{2},\\\\ &\ \ \ \ \ \ \ \ 所以根据定义可知级数收敛.\\\\ &\ \ (3)\ 因为u_n=sin\ \frac{n\pi}{6}=\frac{2sin\ \frac{\pi}{12}sin\ \frac{n\pi}{6}}{2sin\ \frac{\pi}{12}}=\frac{cos\ \frac{2n-1}{12}\pi-cos\ \frac{2n+1}{12}\pi}{2sin\ \frac{\pi}{12}},则\\\\ &\ \ \ \ \ \ \ \ s_n=\frac{1}{2sin\ \frac{\pi}{12}}\left[\left(cos\ \frac{\pi}{12}-cos\ \frac{3\pi}{12}\right)+\left(cos\ \frac{3\pi}{12}-cos\ \frac{5\pi}{12}\right)+\cdot\cdot\cdot+\left(cos\ \frac{2n-1}{12}\pi-cos\ \frac{2n+1}{12}\pi\right)\right]=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{2sin\ \frac{\pi}{12}}\left(cos\ \frac{\pi}{12}-cos\ \frac{2n+1}{12}\pi\right),当n\rightarrow \infty时,cos\ \frac{2n+1}{12}\pi极限不存在,所以s_n的极限不存在,级数发散.\\\\ &\ \ (4)\ 因为s_n=ln\ 2+ln\ \frac{3}{2}+ln\ \frac{4}{3}+\cdot\cdot\cdot+ln\ \frac{n+1}{n}=ln(n+1),\lim_{n\rightarrow \infty}s_n=\infty,所以级数发散. & \end{aligned} (1) 因为sn=(2−1)+(3−2)+⋅⋅⋅+(n+1−n)=n+1−1,n→∞limsn=∞,根据定义可知 级数n=1∑∞(n+1−n)发散. (2) 因为un=(2n−1)(2n+1)1=21(2n−11−2n+11),则 sn=21[(1−31)+(31−51)+⋅⋅⋅+(2n−11−2n+11)]=21(1−2n+11),n→∞limsn=21, 所以根据定义可知级数收敛. (3) 因为un=sin 6nπ=2sin 12π2sin 12πsin 6nπ=2sin 12πcos 122n−1π−cos 122n+1π,则 sn=2sin 12π1[(cos 12π−cos 123π)+(cos 123π−cos 125π)+⋅⋅⋅+(cos 122n−1π−cos 122n+1π)]= 2sin 12π1(cos 12π−cos 122n+1π),当n→∞时,cos 122n+1π极限不存在,所以sn的极限不存在,级数发散. (4) 因为sn=ln 2+ln 23+ln 34+⋅⋅⋅+ln nn+1=ln(n+1),n→∞limsn=∞,所以级数发散.
(1)−89+8292−8393+⋅⋅⋅+(−1)n8n9n+⋅⋅⋅;(2)13+16+19+⋅⋅⋅+13n+⋅⋅⋅;(3)13+13+133+⋅⋅⋅+13n+⋅⋅⋅;(4)32+3222+3323+⋅⋅⋅+3n2n+⋅⋅⋅;(5)(12+13)+(122+132)+(123+133)+⋅⋅⋅+(12n+13n)+⋅⋅⋅.\begin{aligned} &\ \ (1)\ \ -\frac{8}{9}+\frac{8^2}{9^2}-\frac{8^3}{9^3}+\cdot\cdot\cdot+(-1)^n\frac{8^n}{9^n}+\cdot\cdot\cdot;\\\\ &\ \ (2)\ \ \frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\cdot\cdot\cdot+\frac{1}{3n}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ \frac{1}{3}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt[3]{3}}+\cdot\cdot\cdot+\frac{1}{\sqrt[n]{3}}+\cdot\cdot\cdot;\\\\ &\ \ (4)\ \ \frac{3}{2}+\frac{3^2}{2^2}+\frac{3^3}{2^3}+\cdot\cdot\cdot+\frac{3^n}{2^n}+\cdot\cdot\cdot;\\\\ &\ \ (5)\ \ \left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}\right)+\left(\frac{1}{2^3}+\frac{1}{3^3}\right)+\cdot\cdot\cdot+\left(\frac{1}{2^n}+\frac{1}{3^n}\right)+\cdot\cdot\cdot. & \end{aligned} (1) −98+9282−9383+⋅⋅⋅+(−1)n9n8n+⋅⋅⋅; (2) 31+61+91+⋅⋅⋅+3n1+⋅⋅⋅; (3) 31+31+331+⋅⋅⋅+n31+⋅⋅⋅; (4) 23+2232+2333+⋅⋅⋅+2n3n+⋅⋅⋅; (5) (21+31)+(221+321)+(231+331)+⋅⋅⋅+(2n1+3n1)+⋅⋅⋅.
(1)该级数为等比级数,公比为q=−89,因为∣q∣<1,所以该级数收敛.(2)该级数的部分和sn=13+16+19+⋅⋅⋅+13n=13(1+12+13+⋅⋅⋅+1n),因limn→∞(1+12+13+⋅⋅⋅+1n)=+∞,limn→∞sn=+∞,所以该级数发散.(3)该级数的一般项un=13n,因limn→∞un=limn→∞(13)1n=1,不满足收敛的必要条件,所以该级数发散.(4)该级数为等比级数,公比为q=32,因为∣q∣>1,所以该级数发散.(5)该级数的一般项un=12n+13n,因为∑n=1∞12n和∑n=1∞13n都为等比级数,公比分别为q=12,q=13,因为∣q∣<1,所以∑n=1∞12n和∑n=1∞13n都收敛,根据收敛级数性质可知,级数收敛.\begin{aligned} &\ \ (1)\ 该级数为等比级数,公比为q=-\frac{8}{9},因为|q| \lt 1,所以该级数收敛.\\\\ &\ \ (2)\ 该级数的部分和s_n=\frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\cdot\cdot\cdot+\frac{1}{3n}=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}\right),\\\\ &\ \ \ \ \ \ \ \ 因\lim_{n\rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}\right)=+\infty,\lim_{n\rightarrow \infty}s_n=+\infty,所以该级数发散.\\\\ &\ \ (3)\ 该级数的一般项u_n=\frac{1}{\sqrt[n]{3}},因\lim_{n\rightarrow \infty}u_n=\lim_{n\rightarrow \infty}\left(\frac{1}{3}\right)^{\frac{1}{n}}=1,不满足收敛的必要条件,所以该级数发散.\\\\ &\ \ (4)\ 该级数为等比级数,公比为q=\frac{3}{2},因为|q| \gt 1,所以该级数发散.\\\\ &\ \ (5)\ 该级数的一般项u_n=\frac{1}{2^n}+\frac{1}{3^n},因为\sum_{n=1}^{\infty}\frac{1}{2^n}和\sum_{n=1}^{\infty}\frac{1}{3^n}都为等比级数,公比分别为q=\frac{1}{2},q=\frac{1}{3},\\\\ &\ \ \ \ \ \ \ \ 因为|q| \lt 1,所以\sum_{n=1}^{\infty}\frac{1}{2^n}和\sum_{n=1}^{\infty}\frac{1}{3^n}都收敛,根据收敛级数性质可知,级数收敛. & \end{aligned} (1) 该级数为等比级数,公比为q=−98,因为∣q∣<1,所以该级数收敛. (2) 该级数的部分和sn=31+61+91+⋅⋅⋅+3n1=31(1+21+31+⋅⋅⋅+n1), 因n→∞lim(1+21+31+⋅⋅⋅+n1)=+∞,n→∞limsn=+∞,所以该级数发散. (3) 该级数的一般项un=n31,因n→∞limun=n→∞lim(31)n1=1,不满足收敛的必要条件,所以该级数发散. (4) 该级数为等比级数,公比为q=23,因为∣q∣>1,所以该级数发散. (5) 该级数的一般项un=2n1+3n1,因为n=1∑∞2n1和n=1∑∞3n1都为等比级数,公比分别为q=21,q=31, 因为∣q∣<1,所以n=1∑∞2n1和n=1∑∞3n1都收敛,根据收敛级数性质可知,级数收敛.
(1)∑n=1∞(−1)n+1n;(2)1+12−13+14+15−16+⋅⋅⋅+13n−2+13n−1−13n+⋅⋅⋅;(3)∑n=1∞sinnx2n;(4)∑n=0∞(13n+1+13n+2−13n+3).\begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n};\\\\ &\ \ (2)\ \ 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{3n-2}+\frac{1}{3n-1}-\frac{1}{3n}+\cdot\cdot\cdot;\\\\ &\ \ (3)\ \ \sum_{n=1}^{\infty}\frac{sin\ nx}{2^n};\\\\ &\ \ (4)\ \ \sum_{n=0}^{\infty}\left(\frac{1}{3n+1}+\frac{1}{3n+2}-\frac{1}{3n+3}\right). & \end{aligned} (1) n=1∑∞n(−1)n+1; (2) 1+21−31+41+51−61+⋅⋅⋅+3n−21+3n−11−3n1+⋅⋅⋅; (3) n=1∑∞2nsin nx; (4) n=0∑∞(3n+11+3n+21−3n+31).
(1)∣sn+p−sn∣=∣un+1+un+2+un+3+⋅⋅⋅+un+p∣=∣(−1)n+2n+1+(−1)n+3n+2+(−1)n+4n+3+⋅⋅⋅+(−1)n+p+1n+p∣=∣1n+1−1n+2+1n+3−⋅⋅⋅+(−1)p−1n+p∣,因为1n+1−1n+2+1n+3−⋅⋅⋅+(−1)p−1n+p={(1n+1−1n+2)+(1n+3−1n+4)+⋅⋅⋅+1n+p,p为奇数(1n+1−1n+2)+(1n+3−1n+4)+⋅⋅⋅+1n+p−1−1n+p,p为偶数,所以1n+1−1n+2+1n+3−⋅⋅⋅+(−1)p−1n+p>0,∀p∈Z+,当p为奇数时,∣sn+p−sn∣=1n+1−(1n+2−1n+3)−⋅⋅⋅−(1n+p−1−1n+p)<1n+1,当p为偶数时,∣sn+p−sn∣=1n+1−(1n+2−1n+3)−⋅⋅⋅−(1n+p−2−1n+p−1)−1n+p<1n+1,因此对于任意给定的正数ϵ,取正整数N≥1ϵ,当n>N时,对任何正整数p都有∣sn+p−sn∣<1n+1<1n<ϵ,根据柯西审敛原理可知,级数收敛.(2)当n为3的倍数,取p=3n,则∣sn+p−sn∣=∣1n+1+(1n+2−1n+3)+1n+4+(1n+5−1n+6)+⋅⋅⋅+(14n−1−14n)∣>1n+1+1n+4+⋅⋅⋅+14n−2>14n+14n+⋅⋅⋅+14n=14,对ϵ0=14,不论N为任何正整数,当n>N时且n为3的倍数,当p=3n时,有∣sn+p−sn∣>ϵ0,根据柯西审敛原理可知,级数发散.(3)∣sn+p−sn∣=∣un+1+un+2+⋅⋅⋅+un+p∣=∣sin(n+1)x2n+1+sin(n+2)x2n+2+⋅⋅⋅+sin(n+p)x2n+p∣≤12n+1+12n+2+⋅⋅⋅+12n+p=12n+1⋅1−12p1−12<12n,对于任意给定的正数ϵ,取正整数N≥log21ϵ,当n>N时,对一切正整数p,都有∣sn+p−sn∣<ϵ,根据柯西收敛原理可知,该级数收敛.(4)因为un=13n+1+(13n+2−13n+3)>13n+1≥14n,所以对ϵ0=18,不论n取什么正整数,取p=n时,有∣sn+p−sn∣=un+1+un+2+⋅⋅⋅+u2n≥14(1n+1+1n+2+⋅⋅⋅+12n)>14×12=18,因此该级数发散.\begin{aligned} &\ \ (1)\ |s_{n+p}-s_n|=|u_{n+1}+u_{n+2}+u_{n+3}+\cdot\cdot\cdot+u_{n+p}|=\left|\frac{(-1)^{n+2}}{n+1}+\frac{(-1)^{n+3}}{n+2}+\frac{(-1)^{n+4}}{n+3}+\cdot\cdot\cdot+\frac{(-1)^{n+p+1}}{n+p}\right|=\\\\ &\ \ \ \ \ \ \ \ \left|\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p}\right|,\\\\ &\ \ \ \ \ \ \ \ 因为\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p}=\begin{cases}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\cdot\cdot\cdot+\frac{1}{n+p},p为奇数\\\\\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\cdot\cdot\cdot+\frac{1}{n+p-1}-\frac{1}{n+p},p为偶数\end{cases},\\\\ &\ \ \ \ \ \ \ \ 所以\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdot\cdot\cdot+\frac{(-1)^{p-1}}{n+p} \gt 0,\forall\ p \in Z^+,当p为奇数时,\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\cdot\cdot\cdot-\left(\frac{1}{n+p-1}-\frac{1}{n+p}\right) \lt \frac{1}{n+1},当p为偶数时,\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\cdot\cdot\cdot-\left(\frac{1}{n+p-2}-\frac{1}{n+p-1}\right)-\frac{1}{n+p} \lt \frac{1}{n+1},\\\\ &\ \ \ \ \ \ \ \ 因此对于任意给定的正数\epsilon,取正整数N \ge \frac{1}{\epsilon},当n \gt N时,对任何正整数p都有|s_{n+p}-s_n| \lt \frac{1}{n+1} \lt \frac{1}{n} \lt \epsilon,\\\\ &\ \ \ \ \ \ \ \ 根据柯西审敛原理可知,级数收敛.\\\\ &\ \ (2)\ 当n为3的倍数,取p=3n,则\\\\ &\ \ \ \ \ \ \ \ |s_{n+p}-s_n|=\left|\frac{1}{n+1}+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)+\frac{1}{n+4}+\left(\frac{1}{n+5}-\frac{1}{n+6}\right)+\cdot\cdot\cdot+\left(\frac{1}{4n-1}-\frac{1}{4n}\right)\right| \\\\ &\ \ \ \ \ \ \ \ \gt \frac{1}{n+1}+\frac{1}{n+4}+\cdot\cdot\cdot +\frac{1}{4n-2} \gt \frac{1}{4n}+\frac{1}{4n}+\cdot\cdot\cdot+\frac{1}{4n}=\frac{1}{4},对\epsilon_0=\frac{1}{4},不论N为任何正整数,\\\\ &\ \ \ \ \ \ \ \ 当n \gt N时且n为3的倍数,当p=3n时,有|s_{n+p}-s_n| \gt \epsilon_0,根据柯西审敛原理可知,级数发散.\\\\ &\ \ (3)\ |s_{n+p}-s_n|=|u_{n+1}+u_{n+2}+\cdot\cdot\cdot+u_{n+p}|=\left|\frac{sin(n+1)x}{2^{n+1}}+\frac{sin(n+2)x}{2^{n+2}}+\cdot\cdot\cdot+\frac{sin(n+p)x}{2^{n+p}}\right| \\\\ &\ \ \ \ \ \ \ \ \le \frac{1}{2^{n+1}}+\frac{1}{2^{n+2}}+\cdot\cdot\cdot+\frac{1}{2^{n+p}}=\frac{1}{2^{n+1}}\cdot \frac{1-\frac{1}{2^p}}{1-\frac{1}{2}} \lt \frac{1}{2^n},对于任意给定的正数\epsilon,取正整数N \ge log_2\ \frac{1}{\epsilon},\\\\ &\ \ \ \ \ \ \ \ 当n \gt N时,对一切正整数p,都有|s_{n+p}-s_n| \lt \epsilon,根据柯西收敛原理可知,该级数收敛.\\\\ &\ \ (4)\ 因为u_n=\frac{1}{3n+1}+\left(\frac{1}{3n+2}-\frac{1}{3n+3}\right) \gt \frac{1}{3n+1} \ge \frac{1}{4n},所以对\epsilon_0=\frac{1}{8},不论n取什么正整数,取p=n时,\\\\ &\ \ \ \ \ \ \ \ 有|s_{n+p}-s_n|=u_{n+1}+u_{n+2}+\cdot\cdot\cdot+u_{2n} \ge \frac{1}{4}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdot\cdot\cdot+\frac{1}{2n}\right) \gt \frac{1}{4}\times \frac{1}{2}=\frac{1}{8},因此该级数发散. & \end{aligned} (1) ∣sn+p−sn∣=∣un+1+un+2+un+3+⋅⋅⋅+un+p∣=n+1(−1)n+2+n+2(−1)n+3+n+3(−1)n+4+⋅⋅⋅+n+p(−1)n+p+1= n+11−n+21+n+31−⋅⋅⋅+n+p(−1)p−1, 因为n+11−n+21+n+31−⋅⋅⋅+n+p(−1)p−1=⎩⎨⎧(n+11−n+21)+(n+31−n+41)+⋅⋅⋅+n+p1,p为奇数(n+11−n+21)+(n+31−n+41)+⋅⋅⋅+n+p−11−n+p1,p为偶数, 所以n+11−n+21+n+31−⋅⋅⋅+n+p(−1)p−1>0,∀ p∈Z+,当p为奇数时, ∣sn+p−sn∣=n+11−(n+21−n+31)−⋅⋅⋅−(n+p−11−n+p1)