相关视频——黑马程序员匠心之作|C++教程从0到1入门编程,学习编程不再难(167-184)
上一篇笔记:
(99-146)笔记——【黑马程序员】C++核心编程2 -类与对象(封装、继承和多态)-this指针-友元-运算重载符-文本操作(附测试用例源码、测试结果图及详细注释)
本篇文章详细的介绍了C++中模板的概念与相关应用,包含了函数模板中的语法、注意事项、案例、与普通函数的区别、调用规则和其局限性等相关知识点,以及类模板中的语法、与函数模板的区别、类模板中成员函数创建时机、 类模板对象做函数参数等相关知识点。
在记录了视频中所讲内容的同时也在一些难点上加入了我自己的理解,并附上了测试用例源码和测试结果图,以此帮助大家理解每个知识点。只要你认真看完这篇笔记,一定能够掌握模板的概念和应用!\color{red}{只要你认真看完这篇笔记,一定能够掌握模板的概念和应用!}只要你认真看完这篇笔记,一定能够掌握模板的概念和应用!
模板就是建立通用的模具,大大提高复用性
模板的特点:
C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板
C++提供两种模板机制:函数模板和类模板
函数模板作用:
建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。
语法:
template
函数声明或定义
解释:
template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母
示例:
//交换整型函数
void swapInt(int& a, int& b) {int temp = a;a = b;b = temp;
}//交换浮点型函数
void swapDouble(double& a, double& b) {double temp = a;a = b;b = temp;
}//利用模板提供通用的交换函数
template
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}void test01()
{int a = 10;int b = 20;//swapInt(a, b);//利用模板实现交换//1、自动类型推导mySwap(a, b);//2、显示指定类型mySwap(a, b);cout << "a = " << a << endl;cout << "b = " << b << endl;}int main() {test01();system("pause");return 0;
}

总结:
注意事项:
自动类型推导,必须推导出一致的数据类型T,才可以使用
模板必须要确定出T的数据类型,才可以使用
示例:
//利用模板提供通用的交换函数
template
void mySwap(T& a, T& b)
{T temp = a;a = b;b = temp;
}// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{int a = 10;int b = 20;char c = 'c';mySwap(a, b); // 正确,可以推导出一致的T//mySwap(a, c); // 错误,推导不出一致的T类型
}// 2、模板必须要确定出T的数据类型,才可以使用
template
void func()
{cout << "func 调用" << endl;
}void test02()
{//func(); //错误,模板不能独立使用,必须确定出T的类型func(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}int main() {test01();test02();system("pause");return 0;
}

总结:
案例描述:
示例:
//交换的函数模板
template
void mySwap(T &a, T&b)
{T temp = a;a = b;b = temp;
}template // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{for (int i = 0; i < len; i++){int max = i; //最大数的下标for (int j = i + 1; j < len; j++){if (arr[max] < arr[j]){max = j;}}if (max != i) //如果最大数的下标不是i,交换两者{mySwap(arr[max], arr[i]);}}
}
template
void printArray(T arr[], int len) {for (int i = 0; i < len; i++) {cout << arr[i] << " ";}cout << endl;
}
void test01()
{//测试char数组char charArr[] = "bdcfeagh";int num = sizeof(charArr) / sizeof(char);mySort(charArr, num);printArray(charArr, num);
}void test02()
{//测试int数组int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };int num = sizeof(intArr) / sizeof(int);mySort(intArr, num);printArray(intArr, num);
}int main() {test01();test02();system("pause");return 0;
}
总结:模板可以提高代码复用,需要熟练掌握
普通函数与函数模板区别:
示例:
//普通函数
int myAdd01(int a, int b)
{return a + b;
}//函数模板
template
T myAdd02(T a, T b)
{return a + b;
}//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{int a = 10;int b = 20;char c = 'c';cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换myAdd02(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}int main() {test01();system("pause");return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T
调用规则如下:
示例:
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{cout << "调用的普通函数" << endl;
}template
void myPrint(T a, T b)
{ cout << "调用的模板" << endl;
}template
void myPrint(T a, T b, T c)
{ cout << "调用重载的模板" << endl;
}void test01()
{//1、如果函数模板和普通函数都可以实现,优先调用普通函数// 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到int a = 10;int b = 20;myPrint(a, b); //调用普通函数//2、可以通过空模板参数列表来强制调用函数模板myPrint<>(a, b); //调用函数模板//3、函数模板也可以发生重载int c = 30;myPrint(a, b, c); //调用重载的函数模板//4、 如果函数模板可以产生更好的匹配,优先调用函数模板char c1 = 'a';char c2 = 'b';myPrint(c1, c2); //调用函数模板
}int main() {test01();system("pause");return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性
局限性:
例如:
templatevoid f(T a, T b){ a = b;}
在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了
再例如:
templatevoid f(T a, T b){ if(a > b) { ... }}
在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行
因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板
示例:
#include
using namespace std;#include class Person
{
public:Person(string name, int age){this->m_Name = name;this->m_Age = age;}string m_Name;int m_Age;
};//普通函数模板
template
bool myCompare(T& a, T& b)
{if (a == b){return true;}else{return false;}
}//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age){return true;}else{return false;}
}void test01()
{int a = 10;int b = 20;//内置数据类型可以直接使用通用的函数模板bool ret = myCompare(a, b);if (ret){cout << "a == b " << endl;}else{cout << "a != b " << endl;}
}void test02()
{Person p1("Tom", 10);Person p2("Tom", 10);//自定义数据类型,不会调用普通的函数模板//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型bool ret = myCompare(p1, p2);if (ret){cout << "p1 == p2 " << endl;}else{cout << "p1 != p2 " << endl;}
}int main() {test01();test02();system("pause");return 0;
}

总结:
类模板作用:
语法:
template
类
解释:
template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母
示例:
#include
//类模板,因为年龄和姓名是两种类型的数据,所以定义了NameType和AgeType
template
class Person
{
public:Person(NameType name, AgeType age) {this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};void test01()
{// 指定NameType 为string类型,AgeType 为 int类型PersonP1("孙悟空", 999);P1.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板
类模板与函数模板区别主要有两点:
示例:
#include
//类模板
template
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};//1、类模板没有自动类型推导的使用方式
void test01()
{// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导Person p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板p.showPerson();
}//2、类模板在模板参数列表中可以有默认参数
void test02()
{Person p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数p.showPerson();
}int main() {test01();test02();system("pause");return 0;
}
总结:
类模板中成员函数和普通类中成员函数创建时机是有区别的:
示例:
class Person1
{
public:void showPerson1(){cout << "Person1 show" << endl;}
};class Person2
{
public:void showPerson2(){cout << "Person2 show" << endl;}
};template
class MyClass
{
public:T obj;//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成//所以在结果中,编译成功但showPerson1和showPerson2都没有被调用,因为obj无法被确定是什么对象,而类模板的成员函数只有在被调用时才会生成void fun1() { obj.showPerson1(); }void fun2() { obj.showPerson2(); }};void test01()
{MyClass m;m.fun1();//m.fun2();//编译会出错,因为fun2是Person2里的成员函数
}int main() {test01();system("pause");return 0;
}

总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建
学习目标:
一共有三种传入方式:
示例:
#include
//类模板
template
class Person
{
public:Person(NameType name, AgeType age){this->mName = name;this->mAge = age;}void showPerson(){cout << "name: " << this->mName << " age: " << this->mAge << endl;}
public:NameType mName;AgeType mAge;
};//1、指定传入的类型
void printPerson1(Person &p)
{p.showPerson();
}
void test01()
{Person p("孙悟空", 100); //实例化一个Person对象printPerson1(p);
}//2、参数模板化
template
void printPerson2(Person&p)
{p.showPerson();cout << "T1的类型为: " << typeid(T1).name() << endl;cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{Person p("猪八戒", 90);printPerson2(p);
}//3、整个类模板化
template
void printPerson3(T & p)
{cout << "T的类型为: " << typeid(T).name() << endl;p.showPerson();}
void test03()
{Person p("唐僧", 30);printPerson3(p);
}int main() {test01();test02();test03();system("pause");return 0;
}

总结:
当类模板碰到继承时,需要注意一下几点:
示例:
template
class Base
{T m;
};//class Son:public Base //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base //必须指定一个类型
{
};
void test01()
{Son c;
}//类模板继承类模板 ,可以用T2指定父类中的T类型
template
class Son2 :public Base
{
public:Son2(){cout << typeid(T1).name() << endl;cout << typeid(T2).name() << endl;}
};void test02()
{Son2 child1;
}int main() {test01();test02();system("pause");return 0;
}

总结:如果父类是类模板,子类需要指定出父类中T的数据类型
学习目标:能够掌握类模板中的成员函数类外实现
示例:
#include //类模板中成员函数类外实现
template
class Person {
public://成员函数类内声明Person(T1 name, T2 age);void showPerson();public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template
Person::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template
void Person::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}void test01()
{Person p("Tom", 20);p.showPerson();
}int main() {test01();system("pause");return 0;
}

总结:类模板中成员函数类外实现时,需要加上模板参数列表
学习目标:
正常来说,分文件编写是要有三个文件夹,一个是在头文件中创建的Person.h文件,内容是类的声明:
#pragma once //防止头文件重复包含
#include
using namespace std;
#include template
class Person {
public:Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};
一个是在源文件Person.cpp中是类的内容:
#include "person.h"
//构造函数 类外实现
template
Person::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template
void Person::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
最后一个是主函数所在的文件,调用类。
问题:
解决:
示例:
person.hpp中代码:
#pragma once //防止头文件重复包含
#include
using namespace std;
#include template
class Person {
public:Person(T1 name, T2 age);void showPerson();
public:T1 m_Name;T2 m_Age;
};//构造函数 类外实现
template
Person::Person(T1 name, T2 age) {this->m_Name = name;this->m_Age = age;
}//成员函数 类外实现
template
void Person::showPerson() {cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
类模板分文件编写.cpp中代码
#include
using namespace std;//#include "person.h"
#include "person.cpp" //解决方式1,由#include "person.h"改为#include "person.cpp"//解决方式2,将声明和实现写到一起,也就是将.h和.cpp中的内容写在一起(写在.h里),文件后缀名改为.hpp
#include "person.hpp"
void test01()
{Person p("Tom", 10);p.showPerson();
}int main() {test01();system("pause");return 0;
}
总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp
学习目标:
全局函数类内实现 - 直接在类内声明友元即可
全局函数类外实现 - 需要提前让编译器知道全局函数的存在
示例:
全局函数类内实现:
template
class Person
{//1、全局函数配合友元 类内实现friend void printPerson(Person & p){cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;}
public:Person(T1 name, T2 age){this->m_Name = name;this->m_Age = age;}
private:T1 m_Name;T2 m_Age;};//1、全局函数在类内实现
void test01()
{Person p("Tom", 20);printPerson(p);
}int main() {test01();system("pause");return 0;
}

全局函数类外实现:
//因为在声明函数模板时用到了Person,所以要先声明下类模板让编译器知道它的存在
template class Person;//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template
//void printPerson2(Person & p); //2、全局函数配合友元 类外实现 - 先做函数模板声明,下方再做函数模板定义,再做友元
template
void printPerson2(Person & p)
{cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}template
class Person
{//全局函数配合友元 类外实现friend void printPerson2<>(Person & p); //注意<>是为了表示该函数是模板函数public:Person(T1 name, T2 age){this->m_Name = name;this->m_Age = age;}private:T1 m_Name;T2 m_Age;};//2、全局函数在类外实现
void test02()
{Person p("Jerry", 30);printPerson2(p);
}int main() {test02();system("pause");return 0;
}
