PixelLib图像分割
创始人
2024-05-22 21:48:34

文章目录

  • 前言
  • 一、PixelLib依赖安装
  • 二、实例
  • 模型训练


前言

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。

传统的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

本文重点的介绍基于深度学习的图像分割,PixelLib是深度学习图像分割的方法之一,官方给出了多个训练好的模型,适合新手使用;

图像分割应用场景:虚拟背景、医学图像处理、自动驾驶、卫星遥感等等


一、PixelLib依赖安装

pip install tensorflow
pip install imgaug
pip install pixellib --upgrade

PixelLib支持两种主要的分割类型,
你可以通过使用Pixel Lib训练数据集来创建对象分割的自定义模型:

语义分割:图像中具有相同像素值的对象使用相同的颜色映射进行分割。
在这里插入图片描述
实例分割:使用不同的颜色贴图分割同一对象的实例。
在这里插入图片描述

二、实例

from pixellib.semantic import semantic_segmentation
segment_image = semantic_segmentation()
# 加载deeplabv3_xception65_ade20k.h5模型
# 模型在官网都有提供了下载链接
segment_image.load_ade20k_model("deeplabv3_xception65_ade20k.h5")
# 输入图片sample1.jpg,输出图片image_new.jpg,overlay = True时图像透明显示分割层
segment_image.segmentAsAde20k("sample1.jpg", output_image_name = "image_new.jpg", overlay = True)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
PixelLib模型主要两类:

1.Deeplabv3+ 预训练模型:用于语义分割,训练数据为 150类的Ade20k 和 20类的Pascalvoc

2.Mask RCNN 预训练模型:用于实例分割,训练数据为 80类的COCO


模型训练

模型训练部分,可以阅读官方文档:
https://pixellib.readthedocs.io/en/latest/custom_train.html
使用标注工具labelme,对数据集进行标准,按照pixellib的数据集格式要求进行训练。
在这里插入图片描述

相关内容

热门资讯

北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...
世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...