比赛官网地址

petfinder是马来西亚领先的动物福利平台宠物网站地址
在这场比赛中,你将分析原始图像和元数据来预测宠物照片的“Pawpularity”。你将在PetFinder数据上训练和测试你的模型。
在这场比赛中,你的任务是根据宠物的个人资料的照片预测该宠物的受欢迎程度。您还为每张照片提供了手工标记的元数据。因此,本次比赛的数据集包括图像和表格数据

train.csv. or test.csv

import sys
sys.path.append('../input/timm-pytorch-image-models/pytorch-image-models-master')
from timm import create_model
from fastai.vision.all import *
set_seed(999, reproducible=True)
train_df['path'] = train_df['Id'].map(lambda x:str(dataset_path/'train'/x)+'.jpg')
train_df = train_df.drop(columns=['Id'])
train_df = train_df.sample(frac=1).reset_index(drop=True) #shuffle dataframe
train_df.head()

len_df = len(train_df)
print(f"There are {len_df} images")

train_df['Pawpularity'].hist(figsize = (10, 5))
print(f"The mean Pawpularity score is {train_df['Pawpularity'].mean()}")
print(f"The median Pawpularity score is {train_df['Pawpularity'].median()}")
print(f"The standard deviation of the Pawpularity score is {train_df['Pawpularity'].std()}")

print(f"There are {len(train_df['Pawpularity'].unique())} unique values of Pawpularity score")

train_df['norm_score'] = train_df['Pawpularity']/100
train_df['norm_score']

im = Image.open(train_df['path'][1])
width, height = im.size
print(width,height)##960,960
im

上一篇:Vue常用指令及声明周期