分部积分法由两个函数乘积推导得出。
设函数u=u(x)及v=v(x)u=u(x)及v=v(x)u=u(x)及v=v(x)具有连续导数,则两个函数乘积的导数公式为
(uv)′=u′v+uv′(uv)^{'}=u^{'}v+uv^{'}(uv)′=u′v+uv′,移项得 u′v=(uv)′−uv′u^{'}v=(uv)^{'}-uv^{'}u′v=(uv)′−uv′,不等式两边求积分得
∫uv′dx=uv−∫u′vdx\int{uv^{'}dx}=uv-\int{u^{'}vdx}∫uv′dx=uv−∫u′vdx (3-1)
公式(3-1)称为分部积分公式,利用微分简化为:
∫udv=uv−∫vdu\int{udv}=uv-\int{vdu}∫udv=uv−∫vdu (3-2)
注:选取的积分∫udv要比∫vdu\int{udv}要比\int{vdu}∫udv要比∫vdu容易求积分
例1 求∫xsinxdx\int{x\sin xdx}∫xsinxdx
解:∫xsinxdx=−∫xdcosx=−xcosx+∫cosxdx=−xcosx+sinx+C解:\int{x\sin xdx}=-\int{xd\cos x}=-x\cos x+\int{\cos xdx}\\ =-x\cos x+\sin x+C 解:∫xsinxdx=−∫xdcosx=−xcosx+∫cosxdx=−xcosx+sinx+C
例2 求 ∫xexdx\int{xe^xdx}∫xexdx
解:∫xexdx=∫xdex=xex−∫exdx=xex−ex+C解:\int{xe^xdx}=\int{xde^x}=xe^x-\int{e^xdx}\\ =xe^x-e^x+C 解:∫xexdx=∫xdex=xex−∫exdx=xex−ex+C
例3 求∫x2exdx\int{x^2e^xdx}∫x2exdx
解:∫x2exdx=∫x2dex=x2ex−∫exdx2=x2ex−2∫xexdx=x2ex−2(xex−ex)+C=x2ex−2xex+2ex+C=ex(x2−2x+2)+C解:\int{x^2e^xdx}=\int{x^2de^x}=x^2e^x-\int{e^xdx^2}\\ =x^2e^x-2\int{xe^xdx}=x^2e^x-2(xe^x-e^x)+C\\ =x^2e^x-2xe^x+2e^x+C=e^x(x^2-2x+2)+C 解:∫x2exdx=∫x2dex=x2ex−∫exdx2=x2ex−2∫xexdx=x2ex−2(xex−ex)+C=x2ex−2xex+2ex+C=ex(x2−2x+2)+C
∫xnexdx=ex∑k=0n(−1)kCnkxn−k+C\int{x^ne^xdx}=e^x\displaystyle\sum_{k=0}^n(-1)^kC_n^kx^{n-k}+C∫xnexdx=exk=0∑n(−1)kCnkxn−k+C
如果被积函数是幂函数和正(余)弦函数或者幂函数和指数函数的乘积,考虑用分部积分法,并设幂函数为u。
例4 求∫xlnxdx\int{x\ln xdx}∫xlnxdx
解:∫xlnxdx=12∫lnxdx2=12x2lnx−12∫x2dlnx=12x2lnx−12∫xdx=12x2lnx−14x2+C解:\int{x\ln xdx}=\frac{1}{2}\int{\ln xdx^2}=\frac{1}{2}x^2\ln x-\frac{1}{2}\int{x^2d\ln x}\\ =\frac{1}{2}x^2\ln x-\frac{1}{2}\int{xdx}=\frac{1}{2}x^2\ln x-\frac{1}{4}x^2+C 解:∫xlnxdx=21∫lnxdx2=21x2lnx−21∫x2dlnx=21x2lnx−21∫xdx=21x2lnx−41x2+C
例5 求∫arcsinxdx\int{\arcsin xdx}∫arcsinxdx
∫arcsinxdx=xarcsinx−∫xdarcsinx=xarcsinx−∫x1−x2dx=xarcsinx+1−x2+C\int{\arcsin xdx}=x\arcsin x-\int{xd\arcsin x}\\ =x\arcsin x-\int{\frac{x}{\sqrt{1-x^2}}dx}\\ =x\arcsin x+\sqrt{1-x^2}+C ∫arcsinxdx=xarcsinx−∫xdarcsinx=xarcsinx−∫1−x2xdx=xarcsinx+1−x2+C
如果被积函数是幂函数和对数函数或者幂函数和反三角函数的乘积,考虑用分部积分法,并设幂函数为u。
例6 求 ∫exsinxdx\int{e^x\sin xdx}∫exsinxdx
解:I=∫exsinxdx=∫sinxdex=exsinx−∫exdsinx=exsinx−∫excosxdx=exsinx−(excosx+∫exsinxdx)I=12ex(sinx−cosx)+C解:I=\int{e^x\sin xdx}=\int{\sin xde^x}=e^x\sin x-\int{e^xd\sin x}\\ =e^x\sin x-\int{e^x\cos xdx}=e^x\sin x-(e^x\cos x+\int{e^x\sin xdx})\\ I=\frac{1}{2}e^x(\sin x-\cos x)+C 解:I=∫exsinxdx=∫sinxdex=exsinx−∫exdsinx=exsinx−∫excosxdx=exsinx−(excosx+∫exsinxdx)I=21ex(sinx−cosx)+C
uuu的选取顺序:反三角函数->对数函数->幂函数->指数函数->三角函数
或者反三角函数->对数函数->幂函数->三角函数->指数函数
例7:∫sec3xdx\int{sec^3xdx}∫sec3xdx
解:I=∫sec3xdx=∫secxdtanx=secxtanx−∫tanxdsecx=secxtanx+∫secxdx−∫sec3xdxI=12secxtanx+12ln∣secx+tanx∣+C解:I=\int{sec^3xdx}=\int{\sec xd\tan x}=\sec x\tan x-\int{\tan xd\sec x}\\ =\sec x\tan x+\int{\sec xdx}-\int{\sec^3xdx}\\ I=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln|\sec x+\tan x|+C 解:I=∫sec3xdx=∫secxdtanx=secxtanx−∫tanxdsecx=secxtanx+∫secxdx−∫sec3xdxI=21secxtanx+21ln∣secx+tanx∣+C
例8 求∫sinnxdx\int{\sin^nxdx}∫sinnxdx
解:I=∫sinnxdx=−∫sinn−1xdcosx=−cosxsinn−1x+∫cosxdsinn−1x=−sinn−1cosx+(n−1)∫sinn−2)xdx−(n−1)∫sinnxdx∫sinnxdx=−1nsinn−1xcosx+n−1n∫sinn−2xdx解:I=\int{\sin^nxdx}=-\int{\sin^{n-1}xd\cos x}=-\cos x\sin^{n-1}x+\int{\cos xd\sin^{n-1}x}\\ =-\sin^{n-1}\cos x+(n-1)\int{\sin^{n-2)}xdx}-(n-1)\int{\sin^nxdx} \\ \int{\sin^nxdx}=-\frac{1}{n}\sin^{n-1}x\cos x+\frac{n-1}{n}\int{\sin^{n-2}xdx} 解:I=∫sinnxdx=−∫sinn−1xdcosx=−cosxsinn−1x+∫cosxdsinn−1x=−sinn−1cosx+(n−1)∫sinn−2)xdx−(n−1)∫sinnxdx∫sinnxdx=−n1sinn−1xcosx+nn−1∫sinn−2xdx
∫cosnxdx=1ncosn−1xsinx+n−1n∫cosn−2xdx\int{\cos^nxdx}=\frac{1}{n}\cos^{n-1}x\sin x+\frac{n-1}{n}\int{\cos^{n-2}xdx}∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
例10 求∫exdx\int{e^{\sqrt{x}}dx}∫exdx
解:令t=x,x=t2,dx=2tdt∫exdx=∫et⋅2tdt=2∫tdet=2tet−2∫etdt=2tet−2et+C=2ex(x−1)+C解:令t=\sqrt{x},x=t^2,dx=2tdt \\ \int{e^{\sqrt{x}}dx}=\int{e^t\cdot2tdt}=2\int{tde^t}\\ =2te^t-2\int{e^tdt}=2te^t-2e^t+C=2e^{\sqrt{x}}(\sqrt{x}-1)+C 解:令t=x,x=t2,dx=2tdt∫exdx=∫et⋅2tdt=2∫tdet=2tet−2∫etdt=2tet−2et+C=2ex(x−1)+C
❓QQ:806797785
⭐️文档笔记地址:https://gitee.com/gaogzhen/math
参考:
[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P208~p212.
[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p29.