【YOLO系列】YOLOv5超详细解读(网络详解)
创始人
2024-05-27 19:15:25

前言

吼吼!终于来到了YOLOv5啦!

首先,一个热知识:YOLOv5没有发表正式论文哦~

为什么呢?可能YOLOv5项目的作者Glenn Jocher还在吃帽子吧,hh


目录

前言

一、YOLOv5的网络结构

 二、输入端

(1)Mosaic数据增强

(2)自适应锚框计算

(3)自适应图片缩放

三、Backbone

(1)Focus结构

(2)CSP结构

四、Neck

五、Head

(1)Bounding box损失函数

(2)NMS非极大值抑制

 六、训练策略


前期回顾:

【YOLO系列】YOLOv4论文超详细解读2(网络详解)

【YOLO系列】YOLOv4论文超详细解读1(翻译 +学习笔记)

​​​​​​【YOLO系列】YOLOv3论文超详细解读(翻译 +学习笔记)

【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记)

【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)


一、YOLOv5的网络结构

YOLOv5特点: 合适于移动端部署,模型小,速度快

YOLOv5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 就和我们买衣服的尺码大小排序一样,YOLOv5s网络是YOLOv5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。

YOLOv5s的网络结构如下:

(1)输入端 : Mosaic数据增强、自适应锚框计算、自适应图片缩放

(2)Backbone : Focus结构,CSP结构

(3)Neck : FPN+PAN结构

(4)Head : GIOU_Loss

基本组件:

  • CBL: 由Conv+Bn+Leaky_relu激活函数三者组成。
  • Res unit: 借鉴Resnet网络中的残差结构,让网络可以构建的更深。
  • CSPX: 借鉴CSPNet网络结构,由卷积层和X个Res unint模块Concate组成。
  • SPP: 采用1×1,5×5,9×9,13×13的最大池化的方式,进行多尺度融合。

YOLO5算法性能测试图:


 二、输入端

(1)Mosaic数据增强

YOLOv5在输入端采用了Mosaic数据增强,Mosaic 数据增强算法将多张图片按照一定比例组合成一张图片,使模型在更小的范围内识别目标。Mosaic 数据增强算法参考 CutMix数据增强算法。CutMix数据增强算法使用两张图片进行拼接,而 Mosaic 数据增强算法一般使用四张进行拼接,但两者的算法原理是非常相似的。

Mosaic数据增强的主要步骤为:

(1)随机选取图片拼接基准点坐标(xc,yc),另随机选取四张图片。

(2)四张图片根据基准点,分别经过尺寸调整和比例缩放后,放置在指定尺寸的大图的左上,右上,左下,右下位置。

(3)根据每张图片的尺寸变换方式,将映射关系对应到图片标签上。

(4)依据指定的横纵坐标,对大图进行拼接。处理超过边界的检测框坐标。

采用Mosaic数据增强的方式有几个优点:

(1)丰富数据集: 随机使用4张图像,随机缩放后随机拼接,增加很多小目标,大大增加了数据多样性。

(2)增强模型鲁棒性: 混合四张具有不同语义信息的图片,可以让模型检测超出常规语境的目标。

(3)加强批归一化层(Batch Normalization)的效果: 当模型设置 BN 操作后,训练时会尽可能增大批样本总量(BatchSize),因为 BN 原理为计算每一个特征层的均值和方差,如果批样本总量越大,那么 BN 计算的均值和方差就越接近于整个数据集的均值和方差,效果越好。

(4)Mosaic 数据增强算法有利于提升小目标检测性能: Mosaic 数据增强图像由四张原始图像拼接而成,这样每张图像会有更大概率包含小目标,从而提升了模型的检测能力。


 (2)自适应锚框计算

之前我们学的 YOLOv3、YOLOv4,对于不同的数据集,都会计算先验框 anchor。然后在训练时,网络会在 anchor 的基础上进行预测,输出预测框,再和标签框进行对比,最后就进行梯度的反向传播。

在 YOLOv3、YOLOv4 中,训练不同的数据集时,是使用单独的脚本进行初始锚框的计算,在 YOLOv5 中,则是将此功能嵌入到整个训练代码里中。所以在每次训练开始之前,它都会根据不同的数据集来自适应计算 anchor。

but,如果觉得计算的锚框效果并不好,那你也可以在代码中将此功能关闭哈~

自适应的计算具体过程:

    ①获取数据集中所有目标的宽和高。

    ②将每张图片中按照等比例缩放的方式到 resize 指定大小,这里保证宽高中的最大值符合指定大小。

    ③将 bboxes 从相对坐标改成绝对坐标,这里乘以的是缩放后的宽高。

    ④筛选 bboxes,保留宽高都大于等于两个像素的 bboxes。

    ⑤使用 k-means 聚类三方得到n个 anchors,与YOLOv3、YOLOv4 操作一样。

    ⑥使用遗传算法随机对 anchors 的宽高进行变异。倘若变异后的效果好,就将变异后的结果赋值给 anchors;如果变异后效果变差就跳过,默认变异1000次。这里是使用 anchor_fitness 方法计算得到的适应度 fitness,然后再进行评估。 


(3)自适应图片缩放

步骤:

(1) 根据原始图片大小以及输入到网络的图片大小计算缩放比例

原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。

(2) 根据原始图片大小与缩放比例计算缩放后的图片大小

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

(3) 计算黑边填充数值

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到8个像素,再除以2,即得到图片高度两端需要填充的数值。

注意:

(1)Yolov5中填充的是灰色,即(114,114,114)。

(2)训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。

(3)为什么np.mod函数的后面用32?

因为YOLOv5的网络经过5次下采样,而2的5次方,等于32。所以至少要去掉32的倍数,再进行取余。以免产生尺度太小走不完stride(filter在原图上扫描时,需要跳跃的格数)的问题,再进行取余。


三、Backbone

(1)Focus结构

Focus模块在YOLOv5中是图片进入Backbone前,对图片进行切片操作,具体操作是在一张图片中每隔一个像素拿到一个值,类似于邻近下采样,这样就拿到了四张图片,四张图片互补,长得差不多,但是没有信息丢失,这样一来,将W、H信息就集中到了通道空间,输入通道扩充了4倍,即拼接起来的图片相对于原先的RGB三通道模式变成了12个通道,最后将得到的新图片再经过卷积操作,最终得到了没有信息丢失情况下的二倍下采样特征图。

以YOLOv5s为例,原始的640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过一次卷积操作,最终变成320 × 320 × 32的特征图。

切片操作如下:

 

作用: 可以使信息不丢失的情况下提高计算力

不足:Focus 对某些设备不支持且不友好,开销很大,另外切片对不齐的话模型就崩了。

后期改进: 在新版中,YOLOv5 将Focus 模块替换成了一个 6 x 6 的卷积层。两者的计算量是等价的,但是对于一些 GPU 设备,使用 6 x 6 的卷积会更加高效。


 (2)CSP结构

YOLOv4网络结构中,借鉴了CSPNet的设计思路,在主干网络中设计了CSP结构。

YOLOv5与YOLOv4不同点在于,YOLOv4中只有主干网络使用了CSP结构。 而YOLOv5中设计了两种CSP结构,以YOLOv5s网络为例,CSP1_ X结构应用于Backbone主干网络,另一种CSP2_X结构则应用于Neck中。


四、Neck

YOLOv5现在的Neck和YOLOv4中一样,都采用FPN+PAN的结构。但是在它的基础上做了一些改进操作:YOLOV4的Neck结构中,采用的都是普通的卷积操作,而YOLOV5的Neck中,采用CSPNet设计的CSP2结构,从而加强了网络特征融合能力。

结构如下图所示,FPN层自顶向下传达强语义特征,而PAN塔自底向上传达定位特征:


  五、Head

(1)Bounding box损失函数

YOLO v5采用CIOU_LOSS 作为bounding box 的损失函数。(关于IOU_ Loss、GIOU_ Loss、DIOU_ Loss以及CIOU_Loss的介绍,请看YOLOv4那一篇:【YOLO系列】YOLOv4论文超详细解读2(网络详解))


(2)NMS非极大值抑制

NMS 的本质是搜索局部极大值,抑制非极大值元素。

非极大值抑制,主要就是用来抑制检测时冗余的框。因为在目标检测中,在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,所以我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。

算法流程:

  1.对所有预测框的置信度降序排序

  2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的 IOU

  3.根据步骤2中计算的 IOU 去除重叠度高的,IOU > threshold 阈值就直接删除

  4.剩下的预测框返回第1步,直到没有剩下的为止


 SoftNMS:

当两个目标靠的非常近时,置信度低的会被置信度高的框所抑制,那么当两个目标靠的十分近的时候就只会识别出一个 BBox。为了解决这个问题,可以使用 softNMS。

它的基本思想是用稍低一点的分数来代替原有的分数,而不是像 NMS 一样直接置零。


 六、训练策略

(1)多尺度训练(Multi-scale training)。 如果网络的输入是416 x 416。那么训练的时候就会从 0.5 x 416 到 1.5 x 416 中任意取值,但所取的值都是32的整数倍。

(2)训练开始前使用 warmup 进行训练。 在模型预训练阶段,先使用较小的学习率训练一些epochs或者steps (如4个 epoch 或10000个 step),再修改为预先设置的学习率进行训练。

(3)使用了 cosine 学习率下降策略(Cosine LR scheduler)。

(4)采用了 EMA 更新权重(Exponential Moving Average)。 相当于训练时给参数赋予一个动量,这样更新起来就会更加平滑。

(5)使用了 amp 进行混合精度训练(Mixed precision)。 能够减少显存的占用并且加快训练速度,但是需要 GPU 支持。


相关内容

热门资讯

世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...
苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...
北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...