数组(四)-- LC[167] 两数之和-有序数组
创始人
2024-05-30 22:22:01

1 两数之和

1.1 题目描述

        题目链接:https://leetcode.cn/problems/two-sum/description/

1.2 求解思路

1. 暴力枚举

        最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x

参考代码

class Solution(object):def twoSum(self, nums, target):n = len(nums)for i in range(n):for j in range(i+1, n):if nums[i]+nums[j]==target:return [i, j]

2. 哈希表

        创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

参考代码

class Solution:def twoSum(self, nums: List[int], target: int) -> List[int]:hash_dict = dict()for i, num in enumerate(nums):if target - num in hash_dict:return [hash_dict[target - num], i]else:hash_dict[num] = i

2 两数之和-输入有序数组

2.1 题目描述

        题目链接:https://leetcode.cn/problems/corporate-flight-bookings/

2.2 思路分析

1. 二分查找

        在数组中找到两个数,使得它们的和等于目标值,可以首先固定第一个数,然后寻找第二个数,第二个数等于目标值减去第一个数的差。利用数组的有序性质,可以通过二分查找的方法寻找第二个数。为了避免重复寻找,在寻找第二个数时,只在第一个数的右侧寻找。

参考代码

class Solution:def twoSum(self, numbers: List[int], target: int) -> List[int]:n = len(numbers)for i in range(n):low, high = i + 1, n - 1while low <= high:mid = (low + high) // 2if numbers[mid] == target - numbers[i]:return [i + 1, mid + 1]elif numbers[mid] > target - numbers[i]:high = mid - 1else:low = mid + 1return [-1, -1]

复杂度分析

  • 时间复杂度:O(nlog⁡n)O(nlog⁡n)O(nlog⁡n),其中 nnn 是数组的长度。需要遍历数组一次确定第一个数,时间复杂度是 O(n)O(n)O(n),寻找第二个数使用二分查找,时间复杂度是 O(logn)O(logn)O(logn),因此总时间复杂度是 O(nlogn)O(nlogn)O(nlogn)。
  • 空间复杂度:O(1)O(1)O(1)。

2. 双指针

        思路参考自————一张图告诉你 O(n) 的双指针解法的本质原理

为什么双指针往中间移动时,不会漏掉某些情况呢?

        在这道题中,我们要寻找的是符合条件的一对下标 (i,j)(i, j)(i,j),它们需要满足的约束条件是:

  • i、j 都是合法的下标,即 0≤i
  • i < j(题目要求)

        而我们希望从中找到满足 A[i]+A[j]==targetA[i] + A[j] == targetA[i]+A[j]==target 的下标 (i,j)。以 n=8 为例,这时候全部的搜索空间是:

        由于 i、ji、ji、j 的约束条件的限制,搜索空间是白色的倒三角部分。可以看到,搜索空间的大小是 O(n2)O(n^2)O(n2) 数量级的。如果用暴力解法求解,一次只检查一个单元格,那么时间复杂度一定是 O(n2)O(n^2)O(n2)。要想得到 O(n)O(n)O(n) 的解法,我们就需要能够一次排除多个单元格。那么我们来看看,本题的双指针解法是如何削减搜索空间的:

        一开始,我们检查右上方单元格 (0,7),即计算 A[0]+A[7]A[0] + A[7]A[0]+A[7],与 target 进行比较。如果不相等的话,则要么大于 target,要么小于 target。

        假设此时 A[0]+A[7]A[0] + A[7]A[0]+A[7] 小于 target。这时候,我们应该去找和更大的两个数。由于 A[7] 已经是最大的数了,其他的数跟 A[0] 相加,和只会更小。也就是说 A[0]+A[6]、A[0]+A[5]、⋯、A[0]+A[1]A[0] + A[6] 、A[0] + A[5]、\cdots、A[0] + A[1]A[0]+A[6]、A[0]+A[5]、⋯、A[0]+A[1] 也都小于 target,这些都是不合要求的解,可以一次排除。这相当于 i=0i=0i=0 的情况全部被排除。对应用双指针解法的代码,就是 i++i++i++,对应于搜索空间,就是削减了一行的搜索空间,如下图所示。

        排除掉了搜索空间中的一行之后,我们再看剩余的搜索空间,仍然是倒三角形状。我们检查右上方的单元格 (1,7)(1,7)(1,7),计算 A[1]+A[7]A[1] + A[7]A[1]+A[7] 与 target 进行比较。

        假设此时 A[0]+A[7]A[0] + A[7]A[0]+A[7] 大于 target。这时候,我们应该去找 和更小的两个数。由于 A[1] 已经是当前搜索空间最小的数了,其他的数跟 A[7] 相加的话,和只会更大。也就是说 A[1]+A[7]、A[2]+A[7]、⋯、A[6]+A[7]A[1] + A[7] 、A[2] + A[7]、\cdots、A[6] + A[7]A[1]+A[7]、A[2]+A[7]、⋯、A[6]+A[7] 也都大于 target,这些都是不合要求的解,可以一次排除。这相当于 j=0j=0j=0 的情况全部被排除。对应用双指针解法的代码,就是 j++j++j++,对应于搜索空间,就是削减了一列的搜索空间,如下图所示。

        可以看到,无论 A[i]+A[j]A[i] + A[j]A[i]+A[j] 的结果是大了还是小了,我们都可以排除掉一行或者一列的搜索空间。经过 nnn 步以后,就能排除所有的搜索空间,检查完所有的可能性。搜索空间的减小过程如下面动图所示:

参考代码

class Solution:def twoSum(self, numbers: List[int], target: int) -> List[int]:head, tail = 0, len(numbers)-1while head < tail:two_sum = numbers[head] + numbers[tail]if two_sum == target:return [head+1, tail+1]elif two_sum > target:tail -= 1else:head += 1

复杂度分析

  • 时间复杂度:O(n)O(n)O(n),其中 nnn 是数组的长度。两个指针移动的总次数最多为 nnn 次。
  • 空间复杂度:O(1)O(1)O(1)。

相关内容

热门资讯

北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...
世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...