目录
概念
结构
插入
旋转分类
左旋
右旋
左右双旋
右左双旋
AVL树验证
AVL树删除
AVL树的性能
AVL树是一种二叉平衡搜索树,它解决了二叉搜索树退化单枝的问题。
AVL树的左右子树都是AVL树。
左右子树高度之差(简称平衡因子)的绝对值不超过1。
AVL树采用三叉链结构,增加了平衡因子bf,通过平衡因子的更新我们对AVL树进行调整,使其保持平衡。
template
struct AVLTNode
{AVLTNode* _left;AVLTNode* _right;AVLTNode* _parent;pair _kv;int bf;AVLTNode(const pair& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),bf(0){}
};
template
class AVLTree
{typedef AVLTNode Node;
private:Node* _root;
}
插入分为两步:
1.按二叉搜索树规则插入
2.调节平衡因子,在右子树插入,则bf++,在左子树插入,则bf--
bool Insert(const pair& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;//找空节点while (cur){if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else{return false;}}//插入节点cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}//调节平衡因子while (parent){if (parent->_left == cur){parent->bf--;}else{parent->bf++;}//无需调整if (parent->bf == 0){break;}else if (parent->bf == -1 || parent->bf == 1){//继续向上调整cur = parent;parent = parent->_parent;}else if (parent->bf == -2 || parent->bf == 2){//开始旋转,旋转后退出//单纯左边高,右旋if (parent->bf == -2 && cur->bf == -1){RoateR(parent);}//单纯右边高,左旋else if (parent->bf == 2 && cur->bf == 1){RoateL(parent);}//左边高, 左右双旋else if (parent->bf == -2 && cur->bf == 1){RoateRL(parent);}//右边高,右左双旋else if (parent->bf == 2 && cur->bf == -1){RoateRL(parent);}break;}else{assert(false);}}return true;}
单纯右边高,此时进行左旋
void RoateL(Node* parent){//更改链接关系Node* parentparent = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if (parentparent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (parentparent->_left == parent){parentparent->_left = subR;subR->_parent = parentparent;}else{parentparent->_right = subR;subR->_parent = parentparent;}}//调节平衡因子parent->bf = 0;subR->bf = 0;}
单纯左边高,此时进行右旋
void RoateR(Node* parent){//更改链接关系Node* parentparent = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (parentparent->_left == parent){parentparent->_left = subL;subL->_parent = parentparent;}else{parentparent->_right = subL;subL->_parent = parentparent;}}//调节平衡因子parent->bf = 0;subL->bf = 0;}
void RoateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->bf;RoateL(subL);RoateR(parent);//调节平衡因子if (bf == 0){parent->bf = 0;subL->bf = 0;}else if (bf == -1){parent->bf = 1;subL->bf = 0;subLR->bf = 0;}else if(bf == 1){parent->bf = 0;subL->bf = -1;subLR->bf = 0;}else{assert(false);}}
void RoateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->bf;RoateR(subR);RoateL(parent);if (bf == 0){parent->bf = 0;subR->bf = 0;}else if (bf == -1){parent->bf = 0;subR->bf = 1;subRL->bf = 0;}else if(bf == 1){parent->bf = -1;subR->bf = 0;subRL->bf = 0;}else{assert(false);}}
如果验证是否是AVL树?
1.先对当前节点求出左右子树高度差,与平衡因子比较是否相等,并确定高度差绝对值是否小于2
2. 验证左子树是否平衡,验证右子树是否平衡
int Height(Node* root){if (root == nullptr){return 0;}int lefth = Height(root->_left);int righth = Height(root->_right);return lefth > righth ? lefth + 1 : righth + 1;}bool isBanlance(){return _isBanlance(_root);}bool _isBanlance(Node* root){if (root == nullptr){return true;}int left = Height(root->_left);int right = Height(root->_right);if ((right-left) != root->bf){cout << root->_kv.first << "现在是:" << root->bf << endl;cout << root->_kv.first << "应该是:" << (right - left) << endl;return false;}return abs(left - right) < 2 && _isBanlance(root->_left)&& _isBanlance(root->_right);}
AVL树作为了解型数据结构,只需掌握插入即可,如有兴趣,可以查看算法导论里AVL树的删除。
查找效率为logn,但是如果对AVL树进行结构修改,它会旋转很多次,因此如果需要高效查找并且不改变数据个数,可以考虑AVL树。