LeetCode 64. 最小路径和(动态规划)
创始人
2025-05-30 17:02:43

题目:

链接:LeetCode 64. 最小路径和
难度:中等
相关博文:剑指 Offer 47. 礼物的最大价值(动态规划)

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:
在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 100

动态规划:

dp[ i ][ j ] 状态定义:从左上角位置(0, 0)走到位置(i, j)的最小路径和。

状态转移方程:dp[ i ][ j ] = min(dp[ i - 1 ][ j ] + grid[ i ][ j ], dp[ i ][ j - 1] + grid[ i ][ j ])
在遍历过程中 dp[ i ][ j ] 有两种选择:要么从左边一格[ i ][ j - 1 ]移动过来,要么从上面一格[ i - 1 ][ j ]移动过来,选择两条路中数值和较小的那一条。

base case:dp[0][0] = grid[0][0]
左上角第一格是起始点,必选。

代码:

class Solution {
public:int minPathSum(vector>& grid) {int m = grid.size(), n = grid[0].size();vector> dp(m, vector(n));// base casedp[0][0] = grid[0][0];for(int i = 1; i < m; ++i) dp[i][0] = dp[i - 1][0] + grid[i][0]; // 第一列特殊处理for(int j = 1; j < n; ++j) dp[0][j] = dp[0][j - 1] + grid[0][j]; // 第一行特殊处理for(int i = 1; i < m; ++i)for(int j = 1; j < n; ++j)dp[i][j] = min(dp[i - 1][j] + grid[i][j], dp[i][j - 1] + grid[i][j]); //状态转移方程return dp[m - 1][n - 1];}
};

时间复杂度O(m * n),空间复杂度O(m* n)。

相关内容

热门资讯

荼蘼什么意思 岁月缱绻葳蕤生香... 感谢作者【辰夕】的原创独家授权分享编辑整理:【多肉植物百科】百科君坐标:云南 曲靖春而至,季节流转,...
世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...
应用未安装解决办法 平板应用未... ---IT小技术,每天Get一个小技能!一、前言描述苹果IPad2居然不能安装怎么办?与此IPad不...
阿西吧是什么意思 阿西吧相当于... 即使你没有受到过任何外语培训,你也懂四国语言。汉语:你好英语:Shit韩语:阿西吧(아,씨발! )日...