Flink环境部署
创始人
2025-05-31 10:53:31

本地单节点启动 

集群模式启动 

WebUI提交作业

命令行提交作业

部署模式

Flink YARN 模式


本地单节点启动 

        解压

         启动进程

[root@master flink-1.13.0]# bin/start-cluster.sh//启动hadoop
[root@master flink-1.13.0]# start-all.sh

        访问8081端口Web界面

        停止进程 

[root@master flink-1.13.0]# bin/stop-cluster.sh

集群模式启动 

         进入 conf 目录下,修改 flink-conf.yaml 文件,修改 jobmanager.rpc.address 参数

vim flink-conf.yaml

        指定节点 

[root@master conf]# vim masters

        修改 workers 文件,将另外两台节点服务器添加为本 Flink 集群的 TaskManager 节点

[root@master conf]# vim workers

         集群分发Flink

                分发到slave1 

scp -r /opt/flink-1.13.0 root@slave1:/opt

                分发到slave2 

scp -r /opt/flink-1.13.0 root@slave2:/opt

        启动集群 

bin/start-cluster.sh

        查看master节点进程 

        查看slave1节点进程 

        查看slave2节点进程 

         进入查看web端口

        停止集群进程 

[root@master flink-1.13.0]# bin/stop-cluster.sh

WebUI提交作业

        在IDEA中准备无界流处理实现WordCount程序

def main(args: Array[String]): Unit = {//创建执行环境val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment//读取socket文本流数据//socketTextStream("主机名","端口号")val parTool: ParameterTool = ParameterTool.fromArgs(args)val hostname: String = parTool.get("host")val port: Int = parTool.getInt("port")val line: DataStream[String] = env.socketTextStream(hostname,port)//对数据集进行转换处理val fl: DataStream[(String, Int)] = line.flatMap(_.split("")).map(w => (w,1))//分组val gp: KeyedStream[(String, Int), String] = fl.keyBy(_._1)//聚合统计val rs: DataStream[(String, Int)] = gp.sum(1)//输出rs.print()//执行当前任务env.execute()}

         服务器中启动nc服务监听进程

 nc -lk 7777

                如果无法使用nc命令则执行命令安装:yum install -y nc 

 

        程序打包

        为方便自定义结构和定制依赖,我们可以引入插件 maven-assembly-plugin 进行打包,pom.xml 文件中添加打包插件的配置。

org.apache.maven.pluginsmaven-assembly-plugin3.0.0jar-with-dependenciesmake-assemblypackagesingle

         查看引入的打包插件

        执行打包程序 

        进入WebUI提交jar包作业

        查看当前执行计划 

         查看提交成功

        监听程序输入内容

        查看作业执行的输出结果 

 

         停止作业进程

 

命令行提交作业

        启动集群、启动nc监听程序

        新打开一个连接窗口

        上传jar包到虚拟机中 

        命令提交 

[root@master flink-1.13.0]# bin/flink run -m master:8081 -c Flink_one.f1 /data/Flink-1.0-SNAPSHOT.jar --host master --port 4444

        到WebUI查看提交的作业进程 

        命令行查看当前执行作业运行状态

[root@master flink-1.13.0]# bin/flink list JobID

         取消作业

[root@master flink-1.13.0]# bin/flink cancel JobID

 

部署模式

        在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink 为各 种场景提供了不同的部署模式,主要有以下三种:

  1. 会话模式(Session Mode)
  2. 单作业模式(Per-Job Mode)
  3. 应用模式(Application Mode)

        会话模式 

        会话模式其实最符合常规思维。我们需要先启动一个集群,保持一个会话,在这个会话中 通过客户端提交作业。集群启动时所有资源就都已经确定,所以所有提交的 作业会竞争集群中的资源。会话模式比较适合于单个规模小、执行时间短的大量作业。

        单作业模式 

会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个 提交的作业启动一个集群,这就是所谓的单作业(Per-Job)模式,需要注意的是,Flink 本身无法直接这样运行,所以单作业模式一般需要借助一些资源管 理平台来启动集群,比如 YARN、Kubernetes。

        应用模式

        前面提到的两种模式下,应用代码都是在客户端上执行,然后由客户端提交给 JobManager 的。但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给 JobManager;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的 资源消耗。应用模式与单作业模式,都是提交作业之后才创建集群;单作业模式是通过客户端来提交 的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由 JobManager 执行应 用程序的,并且即使应用包含了多个作业,也只创建一个集群。

Flink YARN 模式

        添加环境变量

export HADOOP_HOME=/opt/hadoop-3.3.4
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`

         启动Hadoop

[root@master flink-1.13.0]# start-dfs.sh
[root@master flink-1.13.0]# start-yarn.sh

        修改 flink-conf.yaml 文件

        进入 conf 目录,修改 flink-conf.yaml 文件,修改以下配置,这些配置项的含义在进 行 Standalone 模式配置的时候进行过讲解,若在提交命令中不特定指明,这些配置将作为默认配置。

[root@master flink-1.13.0]# cd /opt/flink-1.13.0/conf
[root@master conf]#  vim flink-conf.yamljobmanager.memory.process.size: 1600m
taskmanager.memory.process.size: 1728m
taskmanager.numberOfTaskSlots: 8
parallelism.default: 1

        YARN会话模式部署

        YARN 的会话模式与独立集群略有不同,需要首先申请一个 YARN 会话(YARN session) 来启动 Flink 集群。具体步骤如下:

(1)启动 Hadoop 集群,包括 HDFS 和 YARN。 

(2)执行脚本命令向 YARN 集群申请资源,开启一个 YARN 会话,启动 Flink 集群。

bin/yarn-session.sh -nm test
  •  -d:分离模式,如果你不想让 Flink YARN 客户端一直前台运行,可以使用这个参数, 即使关掉当前对话窗口,YARN session 也可以后台运行。
  • -jm(--jobManagerMemory):配置 JobManager 所需内存,默认单位 MB。
  • -nm(--name):配置在 YARN UI 界面上显示的任务名。
  • -qu(--queue):指定 YARN 队列名。 
  • -tm(--taskManager):配置每个 TaskManager 所使用内存。 

         YARN单作业模式部署

        在 YARN 环境中,由于有了外部平台做资源调度,所以我们也可以直接向 YARN 提交一 个单独的作业,从而启动一个 Flink 集群。

        执行命令提交作业:

bin/flink run -d -t yarn-per-job -c com.atguigu.wc.StreamWordCount 
FlinkTutorial-1.0-SNAPSHOT.jar

        可以使用命令行查看或取消作业,命令如下 :

$ ./bin/flink list -t yarn-per-job -Dyarn.application.id=application_XXXX_YY
$ ./bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_XXXX_YY 

         YARN应用模式部署

        应用模式同样非常简单,与单作业模式类似,直接执行 flink run-application 命令即可

        执行命令提交作业:

 bin/flink run-application -t yarn-application -c com.atguigu.wc.StreamWordCount 
FlinkTutorial-1.0-SNAPSHOT.jar

        在命令行中查看或取消作业:

$ ./bin/flink list -t yarn-application -Dyarn.application.id=application_XXXX_YY
$ ./bin/flink cancel -t yarn-application 
-Dyarn.application.id=application_XXXX_YY 

        也可以通过 yarn.provided.lib.dirs 配置选项指定位置,将 jar 上传到远程:

./bin/flink run-application -t yarn-application
-Dyarn.provided.lib.dirs="hdfs://myhdfs/my-remote-flink-dist-dir"
hdfs://myhdfs/jars/my-application.jar

相关内容

热门资讯

Linux学习之端口、网络协议... 端口:设备与外界通讯交流的出口 网络协议:   网络协议是指计算机通信网...
kuernetes 资源对象分... 文章目录1. pod 状态1.1 容器启动错误类型1.2 ImagePullBackOff 错误1....
STM32实战项目-数码管 程序实现功能: 1、上电后,数码管间隔50ms计数; 2、...
TM1638和TM1639差异... TM1638和TM1639差异说明 ✨本文不涉及具体的单片机代码驱动内容,值针对芯...
Qt+MySql开发笔记:Qt... 若该文为原创文章,转载请注明原文出处 本文章博客地址:https://h...
Java内存模型中的happe... 第29讲 | Java内存模型中的happen-before是什么? Java 语言...
《扬帆优配》算力概念股大爆发,... 3月22日,9股封单金额超亿元,工业富联、鸿博股份、鹏鼎控股分别为3.0...
CF1763D Valid B... CF1763D Valid Bitonic Permutations 题目大意 拱形排列࿰...
SQL语法 DDL、DML、D... 文章目录1 SQL通用语法2 SQL分类3 DDL 数据定义语言3.1 数据库操作3.2 表操作3....
文心一言 VS ChatGPT... 3月16号,百度正式发布了『文心一言』,这是国内公司第一次发布类Chat...
CentOS8提高篇5:磁盘分...        首先需要在虚拟机中模拟添加一块新的硬盘设备,然后进行分区、格式化、挂载等...
Linux防火墙——SNAT、... 目录 NAT 一、SNAT策略及作用 1、概述 SNAT应用环境 SNAT原理 SNAT转换前提条...
部署+使用集群的算力跑CPU密... 我先在开头做一个总结,表达我最终要做的事情和最终环境是如何的,然后我会一...
Uploadifive 批量文... Uploadifive 批量文件上传_uploadifive 多个上传按钮_asing1elife的...
C++入门语法基础 文章目录:1. 什么是C++2. 命名空间2.1 域的概念2.2 命名...
2023年全国DAMA-CDG... DAMA认证为数据管理专业人士提供职业目标晋升规划,彰显了职业发展里程碑及发展阶梯定义...
php实现助记词转TRX,ET... TRX助记词转地址网上都是Java,js或其他语言开发的示例,一个简单的...
【分割数据集操作集锦】毕设记录 1. 按要求将CSV文件转成json文件 有时候一些网络模型的源码会有data.json这样的文件里...
Postman接口测试之断言 如果你看文字部分还是不太理解的话,可以看看这个视频,详细介绍postma...
前端学习第三阶段-第4章 jQ... 4-1 jQuery介绍及常用API导读 01-jQuery入门导读 02-JavaScri...
4、linux初级——Linu... 目录 一、用CRT连接开发板 1、安装CRT调试工具 2、连接开发板 3、开机后ctrl+c...
Urban Radiance ... Urban Radiance Fields:城市辐射场 摘要:这项工作的目标是根据扫描...
天干地支(Java) 题目描述 古代中国使用天干地支来记录当前的年份。 天干一共有十个,分别为:...
SpringBoot雪花ID长... Long类型精度丢失 最近项目中使用雪花ID作为主键,雪花ID是19位Long类型数...
对JSP文件的理解 JSP是java程序。(JSP本质还是一个Servlet) JSP是&#...
【03173】2021年4月高... 一、单向填空题1、大量应用软件开发工具,开始于A、20世纪70年代B、20世纪 80年...
LeetCode5.最长回文子... 目录题目链接题目分析解题思路暴力中心向两边拓展搜索 题目链接 链接 题目分析 简单来说࿰...
unity的C#学习——浮点常... 浮点常量 在C#中,一个浮点常量是由整数部分、小数点、小数部分和指数部分组成。浮点常量...
Angular 开发NPM第三... 准备工作 首先已经安装过node以及angular以及注册过npm账号 新建项目 ng new ...
【Linux Manpage】... NAME libi2c - publicly accessible functions provid...