给定一个三角形 triangle ,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。
示例:
分析:
一般涉及到i-1
的下标,我们i的取值从1
开始。
动态规划问题的时间复杂度一般为:状态数量*转移计算量
。
class Solution {
public:int minimumTotal(vector>& triangle) {int dp[201][201];int n = triangle.size();//不能使用int dp[201][201] = {INT_MAX},因为这个仅仅是把dp[0][0] = INT_MAX,其余还是0for (int i = 0; i < 201; ++i) {for (int j = 0; j < 201; ++j) {dp[i][j] = INT_MAX;}}dp[0][0] = triangle[0][0];int minpath = INT_MAX;for(int i = 1; i < n; ++i){for(int j = 0; j <= i; ++j){if(j > 0) dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j]) + triangle[i][j];else dp[i][j] = dp[i - 1][j] + triangle[i][j];}}for(int i = 0; i < n; ++i){minpath = min(minpath, dp[n - 1][i]);}return minpath;}
};
时间复杂度:O(n^2), 空间复杂度:O(n^2)
class Solution {
public:int minimumTotal(vector>& triangle){int dp[201];int n = triangle.size() - 1;for(int i = 0; i <= n; ++i){dp[i] = triangle[n][i];}for(int i = n - 1; i >= 0; --i){for(int j = 0; j <= i; ++j){dp[j] = min(dp[j] + triangle[i][j], dp[j + 1] + triangle[i][j]);}}return dp[0];}
};
时间复杂度:O(n^2),空间复杂度:O(n)
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
分析
class Solution {
public:int lengthOfLIS(vector& nums) {int dp[2501];for(int i = 0; i < nums.size(); ++i){dp[i] = 1;for(int j = 0; j < i; ++j){if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}}int result = 0;for(int i = 0; i < nums.size(); ++i) result = max(result, dp[i]);return result;}
};
如何保存最长递增子序列
int lengthOfLIS(vector& nums) {int dp[2501];int g[2501]; //记录最长子序列for (int i = 0; i < nums.size(); ++i) {dp[i] = 1;g[i] = 0;for (int j = 0; j < i; ++j) {if (nums[i] > nums[j]) {if (dp[i] < dp[j] + 1) {dp[i] = dp[j] + 1;//记录dp[i]从哪个状态转移过来的g[i] = j;}}}}int result = 0;int k = 0;for (int i = 0; i < nums.size(); ++i) {if (dp[k] < dp[i]) {k = i;}}result = dp[k];//倒着输出,如果需要正着输出只需要逆序就可以for (int i = 0; i < result; ++i) {cout << nums[k] << " ";k = g[k];}cout << endl;return result;
}
int main()
{vector num = {0,1,0,3,2,3};cout<
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
分析:主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
text1[i - 1] 与 text2[j - 1]相同
,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
text1[i - 1] 与 text2[j - 1]不相同
,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
class Solution {
public:/*//递归实现会超时int longestCommonSubsequence(string text1,int n,string text2,int m){if(n < 0 || m < 0){return 0;}if(dp[n][m] >= 0){return dp[n][m];}if(text1[n] == text2[m]){dp[n][m] = 1 + longestCommonSubsequence(text1,n-1,text2,m-1);}else{int l1 = longestCommonSubsequence(text1,n-1,text2,m);int l2 = longestCommonSubsequence(text1,n,text2,m-1);dp[n][m] = max(l1,l2);}return dp[n][m];}int longestCommonSubsequence(string text1, string text2) {dp.resize(text1.size(),vector(text2.size(),-1));return longestCommonSubsequence(text1,text1.size()-1,text2,text2.size()-1);}
private:vector> dp;*///动态规划int longestCommonSubsequence(string text1, string text2) {int i = text1.size();int j = text2.size();vector> dp(i+1,vector(j+1,0));for(int n = 1;n <= i;n++){for(int m = 1;m <= j;m++){if(text1[n-1] == text2[m-1]){dp[n][m] = 1 + dp[n-1][m-1];}else{dp[n][m] = max(dp[n-1][m],dp[n][m-1]);}}}return dp[i][j];}
};