喜马拉雅基于 HybridBackend 的深度学习模型训练优化实践
创始人
2025-05-31 21:41:46

喜马拉雅作者:李超、陶云、许晨昱、胡文俊、张争光、赵云鹏、张玉静

喜马拉雅AI云借助阿里云提供的HybridBackend开源框架,实现了其推荐模型在 GPU 上的高效训练。

业务介绍

推荐场景是喜马拉雅app的重要应用之一,它广泛应用于热点、猜你喜欢、私人FM、首页信息流、发现页推荐、每日必听等模块。这些模块都依赖于喜马拉雅AI云,这是一套从数据、特征、模型到服务的全流程一站式算法工具平台。

image.png

推荐服务的一个核心诉求是能快速捕捉和反映用户不断变化的兴趣和当前热点,这就要求模型能在短时间内,以可控的成本完成对海量用户数据的训练。使用GPU等高性能硬件来加速模型训练已经成为CV, NLP等领域的行业标准;在使用稀疏训练数据的推荐场景下,国内外的各大厂商也在积极转向使用高性能GPU来替代传统的CPU训练集群,以提升训练的效率。

图片

喜马拉雅AI云借助阿里云机器学习平台PAI的开源框架HybridBackend,实现了其推荐模型在 GPU 上的高效训练。在加速训练的同时, HybridBackend 框架高度易用,帮助其算法团队提升了开发效率。

问题与挑战

随着推荐业务的底层训练硬件逐渐从CPU向GPU转变,我们在生产实践中发现传统的训练方式存在严重的计算资源利用率不足的问题。经过调查与分析,我们发现计算资源利用不足主要来自于稀疏数据访问和分布式训练两方面:

  • 稀疏数据访问:我们使用经典机器学习中常用的 libsvm 数据格式来存储数据,将多个特征合并成一个稀疏字符串表达。在训练时,训练节点从远端的存储(如 OSS)上下载字符串,并从字符串中切分出多个特征输入,然后再喂入对应的 Embedding Table。在特征维度爆炸性增长的情况下,拼接字符串的数据量很大,导致数据读取严重受制于网络带宽;同时切分字符串也造成了 CPU 资源的消耗。

  • 分布式训练:我们尝试过多种分布式训练方式。起初,我们使用 keras+horovod 实现多GPU分布式训练,但在具体使用过程中发现有不少问题,比如出现加速不稳定、模型指标恶化等现象。后来,我们自研实现了一版基于参数服务器(PS)的分布式训练框架,通过内部的 xcache 服务实现 embedding 存储管理并进行线上同步,并使用自研的pspull和pspush算子进行embedding表的更新,一定程度上解决了分布式训练的效率问题。但在进一步增大训练数据量时发现,引入的 ps 算子因为频繁的 IO 交互成为了训练速度的瓶颈,降低了GPU设备利用率,同时 xcache 服务存储变长embedding 的支持成本很高,限制了算法工程师的优化空间。

HybridBackend

我们在调研如何解决上述问题和探索未来技术发展空间时发现了阿里云正在推广的开源框架 HybridBackend,该框架对稀疏模型训练过程中的数据访问、稀疏计算以及分布式训练都进行了深度优化(见图1),并提供了简单易用的接口。令人惊喜的是,这个框架兼容性很强,可以支持 TensorFlow、DeepRec 等多种训练框架,可以很好地满足我们服务不同业务客户的需求。此外,相关的架构和系统设计已经以论文形式在ICDE2022会议上公开,并且在Github上开源了主要功能,可以直接以pip方式安装。

图片

HybridBackend的基本功能模块

图2 描述了在我司模型训练任务中落地 HybridBackend 的全景示意图。蓝色框代表了 HybridBackend 参与或加速了的流程部分。可以看到基本涵盖了全部模型训练流程, 下面重点介绍在数据读取和分布式训练上的优化成果。

图片

HybridBackend在喜马拉雅业务流程中的落地

稀疏数据访问优化

HybridBackend 提供了 hb.data.Dataset 接口 ,通过支持如 Parquet 这样的列存数据格式,可以极大加速稀疏数据的访问。如表1所示,HybridBackend 框架稀疏数据读取性能远高于其他实现。

文件格式文件大小(MB)框架线程数耗时(ms)
CSV11062.61TensorFlow18858.38
Parquet (SNAPPY)3346.10TensorFlow I/O1103056.17
Parquet (SNAPPY)3346.10HybridBackend1397.88
Parquet (SNAPPY)3346.10HybridBackend2021.67

在我们的实际应用中,HybridBackend 稀疏数据访问功能中的一些功能效果显著:

  • 数据列选择性解析:我们将需要原有的类libsvm格式切换成宽表格式,其中每列对应一个特征。HybridBackend 可以支持在读取 Parquet 文件时只读取选择的字段,并将字段数据解析成 TensorFlow 所需要的格式,如自动将 list 类型的数据转换为 SparseTensor,或将 list 类型的数据进行填充截断后转换为 Tensor,满足了我们数据加载的多种需要。
  • 数据读取并行度设置:HybridBackend 可以通过设置num_parallel_reads 参数来调整读不同文件的并行度,通过设置num_parallel_parser_calls 参数来调整读文件中不同列的并行度。通过并行读取,在充分利用机器 CPU 资源的同时,加速了数据读取的性能。

在使用 HybridBackend 后,数据访问不再是我们的训练瓶颈。单卡训练的 GPU 平均利用率提升了 3x 以上,业务模型的训练周期显著缩短。

分布式训练优化

HybridBackend 提供了混合并行训练模式(如图3),每张 GPU 都会存储全部的稠密参数和部分的稀疏参数,并使用可以利用 NVLink 的 NCCL 通信协议来代替传统 PS 训练方式所使用的 RPC 协议。

image.png

HybridBackend提供的混合并行训练模式

根据我们对未来一段时间内模型特征维度和大小的预估,以及我们对训练速度的需求,我们采用了 HybridBackend 混合并行方式进行训练,有效地提高了训练速度和 GPU 利用率。

我们还与 HybridBackend 社区的开发者协同工作,促进了 HybridBackend 对 Keras Model API 的支持,使我们能够在 Keras Model API 下利用 HybridBackend 进行混合并行,并实现模型热启等重要功能。这些功能极大地降低了使用成本。

总体收益

整体流程改造完毕之后,我们在推荐场景中,单机多卡训练 GPU 平均利用率提升了1.4x 以上(视具体模型不同),训练环节整体耗时减少50%以上。目前我们已经在使用了 Tensorflow 和 DeepRec 的模型中全量推广基于 HybridBackend 的训练方案。

image.png

未来规划

喜马拉雅 AI 云平台目前覆盖了喜马拉雅多个app的推荐、广告、搜索推荐等核心业务场景,以及画像产出、数据分析、BI数据生成等定制化开发场景。我们也在探索后续与 HybridBackend 社区的一些合作,以便更好地满足业务需求:
算子优化:HybridBackend支持了embedding lookup 过程中的各种算子的融合优化。我们会尝试通过这种方式提升模型在线推理的性能。

PyTorch支持:NLP 搜推场景中有用 Pytorch 进行训练和部署的需求。我们需要HybridBackend能够支持该场景的实现。

超大型分布式训练:我们的模型训练级别达到了百亿样本十亿特征维度。随着算法复杂度的提升,我们需要支持更大的数据量和更高的维度的训练。

鸣谢

在合作共建阶段,我们得到了 HybridBackend 社区 陈浪石、袁满等的技术支持,他们技术高超、服务周到、响应及时。帮助我们快速完成了深度学习模型的训练流程优化,为我们的业务指标和算法优化空间带来了明显的提升。在此表示衷心的感谢!

HybridBackend 社区

欢迎在 GitHub 上 star 和提 issue,也可以直接在钉钉群中联系 HybridBackend 社区。

GitHub 地址:

https://github.com/alibaba/HybridBackend

相关内容

热门资讯

【实验报告】实验一 图像的... 实验目的熟悉Matlab图像运算的基础——矩阵运算;熟悉图像矩阵的显示方法࿰...
MATLAB | 全网最详细网... 一篇超超超长,超超超全面网络图绘制教程,本篇基本能讲清楚所有绘制要点&#...
大模型落地比趋势更重要,NLP... 全球很多人都开始相信,以ChatGPT为代表的大模型,将带来一场NLP领...
Linux学习之端口、网络协议... 端口:设备与外界通讯交流的出口 网络协议:   网络协议是指计算机通信网...
kuernetes 资源对象分... 文章目录1. pod 状态1.1 容器启动错误类型1.2 ImagePullBackOff 错误1....
STM32实战项目-数码管 程序实现功能: 1、上电后,数码管间隔50ms计数; 2、...
TM1638和TM1639差异... TM1638和TM1639差异说明 ✨本文不涉及具体的单片机代码驱动内容,值针对芯...
Qt+MySql开发笔记:Qt... 若该文为原创文章,转载请注明原文出处 本文章博客地址:https://h...
Java内存模型中的happe... 第29讲 | Java内存模型中的happen-before是什么? Java 语言...
《扬帆优配》算力概念股大爆发,... 3月22日,9股封单金额超亿元,工业富联、鸿博股份、鹏鼎控股分别为3.0...
CF1763D Valid B... CF1763D Valid Bitonic Permutations 题目大意 拱形排列࿰...
SQL语法 DDL、DML、D... 文章目录1 SQL通用语法2 SQL分类3 DDL 数据定义语言3.1 数据库操作3.2 表操作3....
文心一言 VS ChatGPT... 3月16号,百度正式发布了『文心一言』,这是国内公司第一次发布类Chat...
CentOS8提高篇5:磁盘分...        首先需要在虚拟机中模拟添加一块新的硬盘设备,然后进行分区、格式化、挂载等...
Linux防火墙——SNAT、... 目录 NAT 一、SNAT策略及作用 1、概述 SNAT应用环境 SNAT原理 SNAT转换前提条...
部署+使用集群的算力跑CPU密... 我先在开头做一个总结,表达我最终要做的事情和最终环境是如何的,然后我会一...
Uploadifive 批量文... Uploadifive 批量文件上传_uploadifive 多个上传按钮_asing1elife的...
C++入门语法基础 文章目录:1. 什么是C++2. 命名空间2.1 域的概念2.2 命名...
2023年全国DAMA-CDG... DAMA认证为数据管理专业人士提供职业目标晋升规划,彰显了职业发展里程碑及发展阶梯定义...
php实现助记词转TRX,ET... TRX助记词转地址网上都是Java,js或其他语言开发的示例,一个简单的...
【分割数据集操作集锦】毕设记录 1. 按要求将CSV文件转成json文件 有时候一些网络模型的源码会有data.json这样的文件里...
Postman接口测试之断言 如果你看文字部分还是不太理解的话,可以看看这个视频,详细介绍postma...
前端学习第三阶段-第4章 jQ... 4-1 jQuery介绍及常用API导读 01-jQuery入门导读 02-JavaScri...
4、linux初级——Linu... 目录 一、用CRT连接开发板 1、安装CRT调试工具 2、连接开发板 3、开机后ctrl+c...
Urban Radiance ... Urban Radiance Fields:城市辐射场 摘要:这项工作的目标是根据扫描...
天干地支(Java) 题目描述 古代中国使用天干地支来记录当前的年份。 天干一共有十个,分别为:...
SpringBoot雪花ID长... Long类型精度丢失 最近项目中使用雪花ID作为主键,雪花ID是19位Long类型数...
对JSP文件的理解 JSP是java程序。(JSP本质还是一个Servlet) JSP是&#...
【03173】2021年4月高... 一、单向填空题1、大量应用软件开发工具,开始于A、20世纪70年代B、20世纪 80年...
LeetCode5.最长回文子... 目录题目链接题目分析解题思路暴力中心向两边拓展搜索 题目链接 链接 题目分析 简单来说࿰...