Yolov5 QAT量化训练
创始人
2025-06-01 01:04:46

1. QAT介绍

从 模型量化(5): 敏感层分析可以看出来,对于yolov5-nano模型,对最后一层detect层进行敏感层分析的时候,发现对检测精度的影响比较大。所以在PTQ/QAT在进行量化时,会跳过这些敏感层。

QAT微调的模型,就是PTQ在校准后的模型。从上一小节可以看出如果PTQ中模型训练和量化是分开的,而QAT则是在模型训练时加入伪量化节点,用于模拟模型量化时引起的误差

1.1 QAT处理流程

    1. 首先在数据集上以FP32精度进行模型训练,得到训练好的baseline模型;
    1. 在baseline模型中插入伪量化节点,
    1. 进行PTQ得到PTQ后的模型;
    1. 进行量化感知训练;
    1. 导出ONNX 模型。

1.2 QAT后精度的提升

相关内容

热门资讯

北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...