
加法交换律: a+b=b+a。
加法结合律: a+b+c =(a+b)+c=a+(b+c)=(a+c)+b。
乘法交换律: a×b=b×a。
乘法结合律: a×b×c=(a×b)×c =a×(b×c) =(a×c)×b 。
乘法分配律: a×(b+c)=a×b+a×c。
分数乘整数的计算法则:整数和分子相乘的积作分子,分母不变。
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成·。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
扩展资料:
乘法的发展:
在各种文明的算术发展过程中,乘法运算的产生是很重要的一步。一个文明可以比较顺利地发展出计数方法和加减法运算,但要想创造一套简单可行的乘法运算方法却不那么容易。
我们目前使用的乘法竖式计算看似简便,实际上这需要我们事先掌握九九乘法口诀表;考虑到这一点,这种竖式计算并不是完美的。
我们即将看到,在数学的发展过程中,不同的文明创造出了哪些不同的乘法运算方法,其中有的运算法甚至可以完全抛弃乘法表。
古巴比伦数学使用60进制,考古发现的一块古巴比伦泥板证实了这一点。这块泥板上有一个正方形,对角线上有四个数字1, 24, 51, 10。最初发现这块泥板时人们并不知道这是什么意思。
后来某牛人惊讶地发现,如果把这些数字当作60进制的三位小数的话,得到的正好是单位正方形对角线长度的近似值:1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296296... 这说明古巴比伦已经掌握了勾股定理。
参考资料:
加法交换律 加法交换律的概念为:两个加数交换位置,和不变. 字母公式:a+b=b+a 加法结合律 加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。

整数的运算律是什么:
1、加法交换律:交换两个加数的位置和不变。
2、加法结合律:三个数相加,先把前两个数相加再加上第三数,或者先把后两个数相加再加上第一个数,和不变。
3、乘法交换律:交换两个因数的位置和不变。
4、乘法结合律:三个数相乘,先把前两个数相乘再乘第三个数,或者先把后两个数相乘再乘第一个数,积不变。
5、乘法分配律:两个数的和乘一个数,等于这两个数分别乘这个数再把它们的积相加。
整数四则混合运算的运算法则:
在没有括号的算式里,如果只有加减法或者只有乘除法,要从左往右依次计算。
在没有括号的算式里,如果既有乘除法又有加减法,要先算乘除法,再算加减法。
在有括号的算式里,要先算小括号里面的,再算中括号里面的。
四则运算的意义

四则运算的法则
整数、小数和分数的加法和减法的计算法则虽有不同,但它们有一个共同特点,就是把相同的计数单位上的数相加或相减。
整数乘法的法则:
①先把乘数和被乘数的数位对齐。
②从乘数的个位起分别依次乘被乘数每一位上的数,用哪一位数乘得的积的末位要和乘数位对齐。
③最后把几次乘得的积加起来。
小数乘法法则:
前面的步骤与整数乘法的完全相同,最后看被乘数、乘数一共有几位小数,就从积的右边开始往左数几位,点上小数点。
整数除法法则:
①从被除数的最高位除起,除数有几位,就看被除数的前几位,如果被除数比除数小,就要多看一位。
②除到被除数哪一位,就把商写在哪一位的上面。
③除到被除数的哪一位不够商1,就在哪一位的上面写0。
④每次除得的余数必须比除数小。
小数除法法则:小数除法和整数除法相同。
分数乘法法则:两个或多个分数相乘,用分子乘分子作积的分子,分母乘分母作积的分母。
分数除法法则:甲数除以乙数(0除外),用甲数乘乙数的倒数,然后按照分数乘法进行计算。
运算定律与简便算法

四则混合运算
加法和减法叫做第一级运算、乘法和除法叫做第二级运算。
在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算二级运算,再算一级运算。
在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
以上就是关于整数的运算定律,整数乘法的运算规律对小数乘法同样什么的全部内容,以及整数的运算定律的相关内容,希望能够帮到您。