切平面方程的方法,曲面的切平面方程怎么求
admin
2023-07-10 10:03:57

求切平面方程的方法

切平面方程的方法,曲面的切平面方程怎么求图1

求切平面方程的方法:n=[Fx×Fy×Fz],在一定条件下,过曲面Σ上的某一点M的曲线有无数多条,每一条曲线在点M处有一条切线,在一定的条件下这些切线位于同一平面,称这个平面为曲面Σ在点M处的切平面,点M叫做切点。

方程是指含有未知数的等式,是表示两个数学式之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。

通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。

曲面的切平面方程怎么求

1.曲面的切平面的方程是Fx(X-a)+Fy(Y-b)+Fz(Z-c)=0,求切平面方程的关键是通过求偏导数得到切平面法向量,曲面可以看作是一条动线在空间连续运动所形成的轨迹。

2.母线在曲面中的任一位置称为曲面的素线,用来控制母线运动的面、线和点称为导面、导线和导点。

3.母线运动时所受的约束,称为运动的约束条件。

4.在约束条件中,控制母线运动的直线或曲线称为导线。

5.控制母线运动的平面称为导平面。

曲面的切平面方程和法线方程例题

曲面的切平面方程和法线方程如下:

空间曲面的切平面和法线.

设空间曲面的方程为

,F(x,y,z)=0,

而而M(x0,y0,z0)是曲面Σ上的一点.

法向量:(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)).

法线方程:x−x0Fx(x0,y0,z0)=y−y0Fy(x0,y0,z0)=z−z0Fz(x0,y0,z0).

切平面方程:Fx(x0,y0,z0)(x−x0)+Fy(x0,y0,z0)(y−y0)+Fz(x0,y0,z0)(z−z0)=0.

注记: 心中始终想着一个特例,球面:

x2+y2+z2=R2.

皮球放在地上,地面就是切平面,过切点于地面垂直的线就是法线.

扩展资料:

学好高数的方法

学习高数时要注重课堂的听讲,即使很困很累也要坚持,一旦落伍了在补就很难了,还要注重提前预习.老师上课之前一定要预习,变被动为主动,上课时自然就轻松的很多,高数不要去研究很深的题目,

从最基础的开始,一定要立与课本,把书上的练习题弄透彻了考试也就没有问题了,然后就是独立完成作业,不懂的可以请教同学,作为女生可以找个男同学交你,不要找学习很好的,只要觉的比你强就可以,因为越是那样的同学给你讲题时就越仔细,

最好关系好点,他们会很认真负责的,然后就是不能急于求成,慢慢来,或许学了很久考试还是那么多的分,千万别急,量变达到一定程度就自然会质变,坚持者胜,自觉者赢

切平面方程的法向量

zx=2x

zy=2y

法向量=(-2x,-2y,1)

=(0,-2,1)

所以切平面方程为0·(x-0)-2(y-1)+1×(z-1)=0

或:

与xoz面垂直的平面方程可设为Ax+Cz+D=0,

过点(2,-3,1),则

2A+C+D=0,(1)

又与已知直线平行,因此有

2A+3C+D=0,(2)

由以上两式可解得

C=0,D=-2A,

取A=1,C=0,D=-2得所求平面方程为x-2=0。

扩展资料:

在一定条件下,过曲面Σ上的某一点M的曲线有无数多条,每一条曲线在点M处有一条切线,在一定的条件下这些切线位于同一平面,称这个平面为曲面Σ在点M处的切平面(tangent plane)。点M叫做切点。

曲面Σ上过点M的所有曲线在点M处的切线都位于曲面Σ在切点M处的切平面。

切平面方程怎么求

5、令 f(x,y,z)=x^2+2y^2+3z^2-6 ,

分别对 x、y、z 求偏导数,得 2x、4y、6z ,

把 x=y=z=1 代入得切平面的法向量为 (2,4,6),

所以切平面方程为 2(x-1)+4(y-1)+6(z-1)=0 ,

化简得 x+2y+3z-6=0 。

二、

1、因为 |(-1)^n*an*bn|=|an|*|bn| ≤ (an^2+bn^2)/2 ,

所以级数绝对收敛。选 B

以上就是关于切平面方程的方法,曲面的切平面方程怎么求的全部内容,以及求切平面方程的方法的相关内容,希望能够帮到您。

相关内容

热门资讯

苗族的传统节日 贵州苗族节日有... 【岜沙苗族芦笙节】岜沙,苗语叫“分送”,距从江县城7.5公里,是世界上最崇拜树木并以树为神的枪手部落...
北京的名胜古迹 北京最著名的景... 北京从元代开始,逐渐走上帝国首都的道路,先是成为大辽朝五大首都之一的南京城,随着金灭辽,金代从海陵王...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...
世界上最漂亮的人 世界上最漂亮... 此前在某网上,选出了全球265万颜值姣好的女性。从这些数量庞大的女性群体中,人们投票选出了心目中最美...
应用未安装解决办法 平板应用未... ---IT小技术,每天Get一个小技能!一、前言描述苹果IPad2居然不能安装怎么办?与此IPad不...