
椭圆焦点在y轴上的标准方程:y^2/a^2+x^2/b^2=1,椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
解:设椭圆上焦点F₁(0,c),下焦点F₂(0,-c);c为半焦距,c>0。
椭圆上的动点M(x,y);依椭圆定义有等式:
∣MF₁∣+∣MF₂∣=√[x²+(y-c)²]+√[x²+(y+c)²]=2a,a为长半轴之长,a>0。
√[x²+(y-c)²]=2a-√[x²+(y+c)²]
两边平方得:x²+(y-c)²=4a²-4a√[x²+(y+c)²]+x²+(y+c)²化简、移项,得4a√[x²(y+c)²]=4a²+4c
化小系数得:a√[x²+(y+c)²]=a²+cy
再平方得:a²[x²+(y+c)²]=a^4+2a²cy+c²y²
a²x²+(a²-c²)y²=a^4-a²c²
令a²-c²=b²,得a²x²+b²y²=a²b²
再用a²b²除两边,即得焦点在y轴上的椭圆的标准方程为:
y²/a²+x²/b²=1,其中a²-b²=c²;a>b.
其中a为长半轴之长,b为短半轴之长,c为半焦距。

扩展资料:
椭圆方程的几何性质
X,Y的范围
当焦点在X轴时 -a≤x≤a,-b≤y≤b
当焦点在Y轴时 -b≤x≤b,-a≤y≤a
对称性
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
顶点:
焦点在X轴时:长轴顶点:(-a,0),(a,0)
短轴顶点:(0,b),(0,-b)
焦点在Y轴时:长轴顶点:(0,-a),(0,a)
短轴顶点:(b,0),(-b,0)
注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻。
焦点:
当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)
当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)
计算方法

((其中

分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或

(其中

分别是椭圆的长轴,短轴的长)。
圆和椭圆之间的关系:
椭圆包括圆,圆是特殊的椭圆。
x^2/a^2 +y^2/b^2=1
椭圆的标准方程如下:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0)。
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0)。
其中a^2-c^2=b^2。
推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)。

极坐标方程
(一个焦点在极坐标系原点,另一个在0=0的正方向上)r=a(1-e2)/(1-ecose)(e为椭圆的离心率=c/a)。
一般方程
参数方程
x=acose,y=bsine。
椭圆的常见问题以及解法
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2由定义1知:截面是一个椭圆,且以F1、F2为焦点用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆。
以上就是关于椭圆方程焦点坐标怎么求,椭圆焦点在y轴上的标准方程的全部内容,以及椭圆焦点在y轴上的标准方程的相关内容,希望能够帮到您。