【Pytorch】使用Pytorch实现简单的Residual Network
创始人
2025-05-30 21:53:55

文章目录

  • 1. 题目描述
  • 2. 代码实现
    • 验证
  • 写在最后


1. 题目描述

在这个例子中网络结构如下所示(网络结构取自李宏毅老师的HW3)

在这里插入图片描述

需要注意的是,当我们在计算卷积的特征图的维度时,常用以下公式:

OutputDim=(InputDim−KernelSize+2∗Padding)Stride+1OutputDim = \frac{(InputDim-KernelSize+2*Padding)}{Stride} + 1OutputDim=Stride(InputDim−KernelSize+2∗Padding)​+1

  • 当分子不能整除Stride的时候,输出维度默认向下取整,而对于MaxPooling的情况则相反(向上取整)
  • kernel size, output dim, input dim 这些通常都只考虑正方形的输入输出,所以上面的公式只考虑一个维度即可
  • stride对于卷积核的平移时,不论横轴还是纵轴都需要移动相同的stride

2. 代码实现

class MyResNet(nn.Module):def __init__(self):super(MyResNet, self).__init__()# input 128 * 128 * 3# Out = (Input - Kernel + 2 * Padding) / Stride + 1# layer1 O = (128 - 3 + 2)/1 + 1 = 128self.cnn_layer1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(64))# layer2 O = (128 - 3 + 2)/1 + 1 = 128self.cnn_layer2 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(64))# layer3 O = (128 - 3 + 2)/2 + 1 = 64self.cnn_layer3 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1),nn.BatchNorm2d(128))# layer4 O = (64 - 3 + 2)/1 + 1 = 64self.cnn_layer4 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(128))# layer5 O = (64 - 3 + 2)/2 + 1 = 32self.cnn_layer5 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),nn.BatchNorm2d(256))# layer6 O = (64 - 3 + 2)/1 +1 = 32self.cnn_layer6 = nn.Sequential(nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(256))# fcself.fc_layer = nn.Sequential(nn.Linear(32*32*256, 256),nn.ReLU(),nn.Linear(256, 11))self.relu = nn.ReLU()def forward(self, x):# 第一层不做加法,但是保存x1 = self.cnn_layer1(x)x1 = self.relu(x1)res1 = x1 # 第一层出来的作为残差记录# 第二层做加法x2 = self.cnn_layer2(x1)x2 = x2 + res1 # 第一次残差操作x2 = self.relu(x2)# 第三层不做加法,但是保存x3 = self.cnn_layer3(x2)x3 = self.relu(x3)res3 = x3# 第四层做加法x4 = self.cnn_layer4(x3)x4 = x4 + res3x4 = self.relu(x4)# 第五层不做加法,但是保存x5 = self.cnn_layer5(x4)x5 = self.relu(x5)res5 = x5# 第六层做加法x6 = self.cnn_layer6(x5)x6 = x6 + res5x6 = self.relu(x6)# 第七层全连接分类xout = x6.flatten(1) #(256,32,32) --> (256, 32*32)xout = self.fc_layer(xout)return xout

验证

随便找个图片数据集load进来就行,这里就不细说了

data_iter = iter(train_loader)
images, labels = next(data_iter) # 取出一个batchimage = images[0] # batch中的第一章图片
print(images.shape)
print(image.shape)image_np = np.transpose(image.numpy(), (1, 2, 0)) fig, ax = plt.subplots() 
ax.imshow(image_np) # 其实是一个tensor

模型实例化

modeltest = MyResNet().to(device)
images, labels = next(data_iter) # 取出一个batchouts = modeltest(images.to(device))

运行了之后没报错就说明维度的输入输出没问题


写在最后

各位看官,都看到这里了,麻烦动动手指头给博主来个点赞8,您的支持作者最大的创作动力哟!
才疏学浅,若有纰漏,恳请斧正
本文章仅用于各位作为学习交流之用,不作任何商业用途,若涉及版权问题请速与作者联系,望悉知

相关内容

热门资讯

玛雅人的五大预言 玛雅人预言2... 曾经玛雅人预言2012年是世界末日,但当时好像没有发生什么。没想到10年后的2022年,疫情,战争,...
cad打印线条粗细设置 cad... 004-线型(下)打印样式设置和线型文件使用一、线宽设置方法制图规范里边的线宽要求,我们已经定义好,...
应用未安装解决办法 平板应用未... ---IT小技术,每天Get一个小技能!一、前言描述苹果IPad2居然不能安装怎么办?与此IPad不...
荼蘼什么意思 岁月缱绻葳蕤生香... 感谢作者【辰夕】的原创独家授权分享编辑整理:【多肉植物百科】百科君坐标:云南 曲靖春而至,季节流转,...
长白山自助游攻略 吉林长白山游... 昨天介绍了西坡的景点详细请看链接:一个人的旅行,据说能看到长白山天池全凭运气,您的运气如何?今日介绍...