Redis分布式锁的坑
创始人
2025-05-28 13:31:21

img

1. 非原子操作(setnx + expire)

一说到实现Redis的分布式锁,很多小伙伴马上就会想到setnx+ expire命令。也就是说,先用setnx来抢锁,如果抢到之后,再用expire给锁设置一个过期时间。

伪代码如下:

if(jedis.setnx(lock_key,lock_value) == 1){ //加锁jedis.expire(lock_key,timeout); //设置过期时间doBusiness //业务逻辑处理
}

这块代码是有坑的,因为setnxexpire两个命令是分开写的,并不是原子操作!如果刚要执行完setnx加锁,正要执行expire设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老”了,别的线程永远获取不到锁啦。

2.被别的客户端请求覆盖( setnx + value为过期时间)

为了解决:发生异常时,锁得不到释放的问题。有小伙伴提出,可以把过期时间放到setnxvalue里面。如果加锁失败,再拿出value值和当前系统时间校验一下是否过期即可。伪代码实现如下:

long expireTime = System.currentTimeMillis() + timeout; //系统时间+设置的超时时间
String expireTimeStr = String.valueOf(expireTime); //转化为String字符串// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(lock_key, expireTimeStr) == 1) {return true;
} // 如果锁已经存在,获取锁的过期时间
String oldExpireTimreStr = jedis.get(lock_key);// 如果获取到的老的预期过期时间,小于系统当前时间,表示已经过期了
if (oldExpireTimreStr != null && Long.parseLong(oldExpireTimreStr) < System.currentTimeMillis()) {//锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)String oldValueStr = jedis.getSet(lock_key, expireTimeStr);if (oldValueStr != null && oldValueStr.equals(oldExpireTimreStr)) {//考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁return true;}
}//其他情况,均返回加锁失败
return false;
}

这种实现的方案,也是有坑的:如果锁过期的时候,并发多个客户端同时请求过来,都执行jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖

3. 忘记设置过期时间

之前review代码的时候,看到这样实现的分布式锁,伪代码

try{if(jedis.setnx(lock_key,lock_value) == 1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {unlock(lockKey);- //释放锁
} 

这块有什么问题呢?是的,忘记设置过期时间了。如果程序在运行期间,机器突然挂了,代码层面没有走到finally代码块,即在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁,所以这里需要给lockKey加一个过期时间。注意哈,使用分布式锁,一定要设置过期时间哈

4. 业务处理完,忘记释放锁

很多小伙伴,会使用Redisset指令扩展参数来实现分布式锁。

set指令扩展参数:SET key value[EX seconds][PX milliseconds][NX|XX]- NX :表示key不存在的时候,才能set成功,也即保证只有第一个客户端请求才能获得锁,而其他客户端请求只能等其释放锁,才能获取。
- EX seconds :设定key的过期时间,时间单位是秒。
- PX milliseconds: 设定key的过期时间,单位为毫秒
- XX: 仅当key存在时设置值

小伙伴会写出如下伪代码:

if(jedis.set(lockKey, requestId, "NX", "PX", expireTime)==1){ //加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回
}
return false; //加锁失败

这块伪代码,初看觉得没啥问题,但是细想,不太对呀。因为忘记释放锁了!如果每次加锁成功,都要等到超时时间才释放锁,是会有问题的。这样程序不高效,应当每次处理完业务逻辑,都要释放锁

正例如下:

try{if(jedis.set(lockKey, requestId, "NX", "PX", expireTime)==1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {unlock(lockKey);- //释放锁
}  

5. B的锁被A给释放了

我们来看下这块伪代码:

try{if(jedis.set(lockKey, requestId, "NX", "PX",expireTime)==1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {unlock(lockKey); //释放锁
}  

大家觉得会有哪些坑呢?

假设在这样的并发场景下:A、B两个线程来尝试给Redis的keylockKey加锁,A线程先拿到锁(假如锁超时时间是3秒后过期)。如果线程A执行的业务逻辑很耗时,超过了3秒还是没有执行完。这时候,Redis会自动释放lockKey锁。刚好这时,线程B过来了,它就能抢到锁了,开始执行它的业务逻辑,恰好这时,线程A执行完逻辑,去释放锁的时候,它就把B的锁给释放掉了。

正确的方式应该是,在用set扩展参数加锁时,放多一个这个线程请求的唯一标记,比如requestId,然后释放锁的时候,判断一下是不是刚刚的请求

try{if(jedis.set(lockKey, requestId, "NX", "PX",expireTime)==1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestIdunlock(lockKey);//释放锁}   
}  

6. 释放锁时,不是原子性

以上的这块代码,还是有坑:

   if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestIdunlock(lockKey);//释放锁}   

因为判断是不是当前线程加的锁和释放锁不是一个原子操作。如果调用unlock(lockKey)释放锁的时候,锁已经过期,所以这把锁已经可能已经不属于当前客户端,会解除他人加的锁

因此,这个坑就是:判断和删除是两个操作,不是原子的,有一致性问题。释放锁必须保证原子性,可以使用Redis+Lua脚本来完成,类似Lua脚本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) 
elsereturn 0
end;  

7. 锁过期释放,业务没执行完

加锁后,如果超时了,Redis会自动释放清除锁,这样有可能业务还没处理完,锁就提前释放了。怎么办呢?

有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:

2

只要线程加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程一还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题

8. Redis分布式锁和@transactional一起使用失效

大家看下这块伪代码:

@Transactional
public void updateDB(int lockKey) {boolean lockFlag = redisLock.lock(lockKey);if (!lockFlag) {throw new RuntimeException(“请稍后再试”);}doBusiness //业务逻辑处理redisLock.unlock(lockKey);
}

在事务中,使用了Redis分布式锁.这个方法一旦执行,事务生效,接着就Redis分布式锁生效,代码执行完后,先释放Redis分布式锁,然后再提交事务数据,最后事务结束。在这个过程中,事务没有提交之前,分布式锁已经被释放,导致分布式锁失效

这是因为:

springAop,会在updateDB方法之前开启事务,之后再加锁,当锁住的代码执行完成后,再提交事务,因此锁住的代码块执行是在事务之内执行的,可以推断在代码块执行完时,事务还未提交,锁已经被释放,此时其他线程拿到锁之后进行锁住的代码块,读取的库存数据不是最新的。

正确的实现方法,可以在updateDB方法之前就上锁,即还没有开事务之前就加锁,那么就可以保证线程的安全性.

9.锁可重入

前面讨论的Redis分布式锁,都是不可重入的

所谓的不可重入,就是当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,会阻塞,不可以再次获得锁。同一个人拿一个锁 ,只能拿一次不能同时拿2次。

不可重入的分布式锁的话,是可以满足绝大多数的业务场景。但是有时候一些业务场景,我们还是需要可重入的分布式锁,大家实现分布式锁的过程中,需要注意一下,你当前的业务场景是否需要可重入的分布式锁。

Redis只要解决这两个问题,就能实现重入锁了:

  • 怎么保存当前持有的线程
  • 怎么维护加锁次数(即重入了多少次)

实现一个可重入的分布式锁,我们可以参考JDKReentrantLock的设计思想。实际上,可以直接使用Redisson框架,它是支持可重入锁的。

10.Redis主从复制导致的坑

实现Redis分布式锁的话,要注意Redis主从复制的坑。因为Redis一般都是集群部署的:

img

如果线程一在Redismaster节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:RedlockRedlock核心思想是这样的:

搞多个Redis master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5Redis master节点,在5台服务器上面运行这些Redis实例。

img

RedLock的实现步骤如下:

  1. 获取当前时间,以毫秒为单位。
  2. 按顺序向5master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
  3. 客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms
  4. 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
  5. 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁
  • 根据设置的超时时间来判断,是不是要跳过该master节点。
  • 如果大于等于3个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
  • 如果获取锁失败,解锁!

相关内容

热门资讯

【C++初阶】10 .习题1 2022-09-16_命名空间 1. 命名空间的概念 下面关于C++命名空间描述错...
基于bearpi的智能小车--... 基于bearpi的智能小车--Qt上位机设计 前言一、界面原型1.主界面2.网络配置子窗口模块 二、...
三、Java核心技术(进阶)-... 一、概念 国际化编程:通过一套软件适配多个语言包。 二、相关函数 java.util....
水声功率放大器与宽带匹配技术研...   作为声呐设备重要的一份子,水声信号发射机承担着非常重要的作用。水声信号发射机其实是...
【C++】12.继承 1.引入继承 学生管理系统 学生 老师 社管阿姨 保安大叔 4个类 4个类有很多重复的东西...
LINUX中atd和crond... 一、atd与crond的区别1、运行方式不同,at只运行一次,而cron...
C++数据结构 —— 哈希表、... 目录 1.哈希概念 1.1哈希函数 1.2哈希冲突 2.闭散列实现 3.开散列实现 4.容器的封装 ...
Streamlit 学习笔记1 Streamlit 学习笔记1 文章目录Streamlit 学习笔记1首先 安利下streamlit...
基层区域应用平台为目标开发的基... 系统特点:  JAVA语言开发,MYSQL数据库,B/S架构 基于云计算...
数智链接,新一代校园招聘解决方... 疫情3年市场巨变,00后新生代初登上求职舞台,中和作用下,...
面试官:rem和vw有什么区别 "rem" 和 "vw"的区别 "rem" 和 "vw" 都是用于网页设计的CSS单位。 "rem"...
Pytest自动化测试框架完美... 简介 Allure Framework是一种灵活的、轻量级、多语言测试报告工具。 不仅可以以简洁的网...
华为nat配置实验:内网能够访... 一 需求分析1.1 需求 公司A在北京,公司B在上海,本次实验仅仅模拟局...
事务日志与 两阶段提交 文章目录 Redo Logredo的优点redo的组成redo的整体流程不同刷盘策略演示 Undo ...
【目标跟踪算法】Strong ... 1. Strong SORT算法的背景和概述 Strong SORT算法基于经典的Deep SORT...
Lock接口——JUC随记2 1、synchronized 1.1、synchronized的三种应用方式 一. 修饰实例方法&#...
IO流之字符流 文章目录1. 字符流概述2. 编码表3. 编码和解码4. 写数据的方式5. 读数据的方式6. 转换流...
C语言的灵魂---指针(基础) C语言灵魂指针1.什么是指针?2.指针的大小3.指针的分类3.1比较常规的指针类型3....
【华为OD机试真题JAVA】最... 标题:最优策略组合下的总的系统消耗资源数问题 | 时间限制:1秒 | 内存限制:262144K | ...
MATLAB | 给热图整点花... 前段时间写的特殊热图绘制函数迎来大更新,基础使用教程可以看看这一篇: h...
小知识·BitTorrent ... BitTorrent 简介从 P2P 说起经常在网上飙车的老司机应该都知道 BT 下载,...
Redis和Memcached...         对于大多数的系统服务来说,缓存是提高性能和可伸缩性的关键。一般情况下我...
[牛客算法总结]:重建二叉树    标签: 二叉树、DFS、先序遍历、中序遍历、递归   题目: 给定...
VS Code 将推出更多 A... 大家好,欢迎来到我们的二月更新!我们将为您带来与 JUnit 5 并行测...
为什么要推荐使用pnpm 在谈起pnpm时先来聊一聊之前的npm和yarn有什么存在的问题  npm2 在npm3之前我们安装...
多线程开发 文章目录多线程开发1. Thread创建多线程2. ThreadPoolExecutor创建进程池a...
闪存系统性能优化方向?NAND... Hello 大家好, 我是元存储~ 目录 前言 1. 提升效果 2. Cache Re...
关于复杂链表的复制问题(力扣) 上面我们已经说了两个关于链表的实现了,其中一个是单链表,另外一个是双向带...
STM32学习(二) 常用开发工具简介 安装仿真器驱动 DAP仿真器免驱ST LINK仿真器驱动安装方法:...
K8s配置jenkins Ma... 1、k8s安装jenkins 以阿里云的ACK为例 A、在有状态点击镜像创建,配置自己...